ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-06-13
    Description: The risk of osteoporotic fractures is currently estimated based on an assessment of bone mass as measured by dual-energy X-ray absorptiometry. However, patient-specific finite element (FE) simulations that include information from multiple scales have the potential to allow more accurate prognosis. In the past, FE models of bone were limited either in resolution or to the linearization of the mechanical behaviour. Now, nonlinear, high-resolution simulations including the bone microstructure have been made possible by recent advances in simulation methods, computer infrastructure and imaging, allowing the implementation of multiscale modelling schemes. For example, the mechanical loads generated in the musculoskeletal system define the boundary conditions for organ-level, continuum-based FE models, whose nonlinear material properties are derived from microstructural information. Similarly microstructure models include tissue-level information such as the dynamic behaviour of collagen by modifying the model's constitutive law. This multiscale approach to modelling the mechanics of bone allows a more accurate characterization of bone fracture behaviour. Furthermore, such models could also include the effects of ageing, osteoporosis and drug treatment. Here we present the current state of the art for multiscale modelling and assess its potential to better predict an individual's risk of fracture in a clinical setting.
    Print ISSN: 1364-503X
    Electronic ISSN: 1471-2962
    Topics: Mathematics , Physics , Technology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-02-01
    Description: Studies investigating micromechanical properties in mouse cortical bone often solely focus on the mechanical behaviour along the long axis of the bone. Therefore, data on the anisotropy of mouse cortical bone is scarce. The aim of this study is the first-time evaluation of the anisotropy ratio between the longitudinal and transverse directions of reduced modulus and hardness in mouse femurs by using the nanoindentation technique. For this purpose, nine 22-week-old mice (C57BL/6) were sacrificed and all femurs extracted. A total of 648 indentations were performed with a Berkovich tip in the proximal (P), central (C) and distal (D) regions of the femoral shaft in the longitudinal and transverse directions. Higher values for reduced modulus are obtained for indentations in the longitudinal direction, with anisotropy ratios of 1.72 ± 0.40 (P), 1.75 ± 0.69 (C) and 1.34 ± 0.30 (D). Hardness is also higher in the longitudinal direction, with anisotropic ratios of 1.35 ± 0.27 (P), 1.35 ± 0.47 (C) and 1.17 ± 0.19 (D). We observed a significant anisotropy in the micromechanical properties of the mouse femur, but the correlation for reduced modulus and hardness between the two directions is low ( r 2  
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-05-28
    Description: Modelling and remodelling are the processes by which bone adapts its shape and internal structure to external influences. However, the cellular mechanisms triggering osteoclastic resorption and osteoblastic formation are still unknown. In order to investigate current biological theories, in silico models can be applied. In the past, most of these models were based on the continuum assumption, but some questions related to bone adaptation can be addressed better by models incorporating the trabecular microstructure. In this paper, existing simulation models are reviewed and one of the microstructural models is extended to test the hypothesis that bone adaptation can be simulated without particular knowledge of the local strain distribution in the bone. Validation using an experimental murine loading model showed that this is possible. Furthermore, the experimental model revealed that bone formation cannot be attributed only to an increase in trabecular thickness but also to structural reorganization including the growth of new trabeculae. How these new trabeculae arise is still an unresolved issue and might be better addressed by incorporating other levels of hierarchy, especially the cellular level. The cellular level sheds light on the activity and interplay between the different cell types, leading to the effective change in the whole bone. For this reason, hierarchical multi-scale simulations might help in the future to better understand the biomathematical laws behind bone adaptation.
    Print ISSN: 1364-503X
    Electronic ISSN: 1471-2962
    Topics: Mathematics , Physics , Technology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...