ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-06-19
    Description: Trait-based approaches have long been a feature of physiology and of ecology. While the latter fields drifted apart in the twentieth century, they are converging owing at least partly to growing similarities in their trait-based approaches, which have much to offer conservation biology. The convergence of spatially explicit approaches to understanding trait variation and its ecological implications, such as encapsulated in community assembly and macrophysiology, provides a significant illustration of the similarity of these areas. Both adopt trait-based informatics approaches which are not only providing fundamental biological insights, but are also delivering new information on how environmental change is affecting diversity and how such change may perhaps be mitigated. Such trait-based conservation physiology is illustrated here for each of the major environmental change drivers, specifically: the consequences of overexploitation for body size and physiological variation; the impacts of vegetation change on thermal safety margins; the consequences of changing net primary productivity and human use thereof for physiological variation and ecosystem functioning; the impacts of rising temperatures on water loss in ectotherms; how hemisphere-related variation in traits may affect responses to changing rainfall regimes and pollution; and how trait-based approaches may enable interactions between climate change and biological invasions to be elucidated.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-23
    Description: Climate change leads to species range shifts and consequently to changes in diversity. For many systems, increases in diversity capacity have been forecast, with spare capacity to be taken up by a pool of weedy species moved around by humans. Few tests of this hypothesis have been undertaken, and in many temperate systems, climate change impacts may be confounded by simultaneous increases in human-related disturbance, which also promote weedy species. Areas to which weedy species are being introduced, but with little human disturbance, are therefore ideal for testing the idea. We make predictions about how such diversity capacity increases play out across elevational gradients in non-water-limited systems. Then, using modern and historical data on the elevational range of indigenous and naturalized alien vascular plant species from the relatively undisturbed sub-Antarctic Marion Island, we show that alien species have contributed significantly to filling available diversity capacity and that increases in energy availability rather than disturbance are the probable underlying cause.
    Print ISSN: 1744-9561
    Electronic ISSN: 1744-957X
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-02-07
    Description: Protected areas are generally regarded as essential for the long-term maintenance of biodiversity. Evidence for their effectiveness in this regard is, however, somewhat equivocal. Here, we document the relationship between the proportion of protected land and species richness in a region, both with and without taking spatial variation in environmental energy availability into account. Using the South African avifauna as a case study, we find that total and threatened species richness exhibit modest increases with the proportion of protected land. While the protected area network should be expanded, it is essential that conservation efforts also focus on maintaining biodiversity in the wider unprotected landscape that supports high species richness.
    Print ISSN: 1744-9561
    Electronic ISSN: 1744-957X
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-11-27
    Description: Landscape transformation by humans is virtually ubiquitous, with several suggestions being made that the world's biomes should now be classified according to the extent and nature of this transformation. Even those areas that are thought to have a relatively limited human footprint have experienced substantial biodiversity change. This is true of both marine and terrestrial systems of southern Africa, a region of high biodiversity and including several large conservation areas. Global change drivers have had substantial effects across many levels of the biological hierarchy as is demonstrated in this review, which focuses on terrestrial systems. Interactions among drivers, such as between climate change and invasion, and between changing fire regimes and invasion, are complicating attribution of change effects and management thereof. Likewise CO 2 fertilization is having a much larger impact on terrestrial systems than perhaps commonly acknowledged. Temporal changes in biodiversity, and the seeming failure of institutional attempts to address them, underline a growing polarization of world views, which is hampering efforts to address urgent conservation needs.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-12-02
    Description: Evolutionary theory proposes that maternal inheritance of mitochondria will facilitate the accumulation of mitochondrial DNA (mtDNA) mutations that are harmful to males but benign or beneficial to females. Furthermore, mtDNA haplotypes sampled from across a given species distribution are expected to differ in the number and identity of these ‘male-harming’ mutations they accumulate. Consequently, it is predicted that the genetic variation which delineates distinct mtDNA haplotypes of a given species should confer larger phenotypic effects on males than females (reflecting mtDNA mutations that are male-harming, but female-benign), or sexually antagonistic effects (reflecting mutations that are male-harming, but female-benefitting). These predictions have received support from recent work examining mitochondrial haplotypic effects on adult life-history traits in Drosophila melanogaster . Here, we explore whether similar signatures of male-bias or sexual antagonism extend to a key physiological trait—metabolic rate. We measured the effects of mitochondrial haplotypes on the amount of carbon dioxide produced by individual flies, controlling for mass and activity, across 13 strains of D. melanogaster that differed only in their mtDNA haplotype. The effects of mtDNA haplotype on metabolic rate were larger in males than females. Furthermore, we observed a negative intersexual correlation across the haplotypes for metabolic rate. Finally, we uncovered a male-specific negative correlation, across haplotypes, between metabolic rate and longevity. These results are consistent with the hypothesis that maternal mitochondrial inheritance has led to the accumulation of a sex-specific genetic load within the mitochondrial genome, which affects metabolic rate and that may have consequences for the evolution of sex differences in life history. This article is part of the theme issue ‘Linking the mitochondrial genotype to phenotype: a complex endeavour’.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-05-30
    Description: Antarctica and its surrounding islands lie at one extreme of global variation in diversity. Typically, these regions are characterized as being species poor and having simple food webs. Here, we show that terrestrial systems in the region are nonetheless characterized by substantial spatial and temporal variations at virtually all of the levels of the genealogical and ecological hierarchies which have been thoroughly investigated. Spatial variation at the individual and population levels has been documented in a variety of genetic studies, and in mosses it appears that UV-B radiation might be responsible for within-clump mutagenesis. At the species level, modern molecular methods have revealed considerable endemism of the Antarctic biota, questioning ideas that small organisms are likely to be ubiquitous and the taxa to which they belong species poor. At the biogeographic level, much of the relatively small ice-free area of Antarctica remains unsurveyed making analyses difficult. Nonetheless, it is clear that a major biogeographic discontinuity separates the Antarctic Peninsula and continental Antarctica, here named the ‘Gressitt Line’. Across the Southern Ocean islands, patterns are clearer, and energy availability is an important correlate of indigenous and exotic species richness, while human visitor numbers explain much of the variation in the latter too. Temporal variation at the individual level has much to do with phenotypic plasticity, and considerable life-history and physiological plasticity seems to be a characteristic of Antarctic terrestrial species. Environmental unpredictability is an important driver of this trait and has significantly influenced life histories across the region and probably throughout much of the temperate Southern Hemisphere. Rapid climate change-related alterations in the range and abundance of several Antarctic and sub-Antarctic populations have taken place over the past several decades. In many sub-Antarctic locations, these have been exacerbated by direct and indirect effects of invasive alien species. Interactions between climate change and invasion seem set to become one of the most significant conservation problems in the Antarctic. We conclude that despite the substantial body of work on the terrestrial biodiversity of the Antarctic, investigations of interactions between hierarchical levels remain scarce. Moreover, little of the available information is being integrated into terrestrial conservation planning, which lags far behind in this region by comparison with most others.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-09-06
    Description: Wandering albatrosses ( Diomedea exulans ) nest on Southern Ocean islands, building elevated nests upon which they incubate eggs and raise chicks, and which the chicks occupy through winter. The nests support high invertebrate biomass, including larvae of the flightless moth Pringleophaga marioni . Here we argue that high biomass of P. marioni in the nests is not associated with nutrient loading as previously suspected, but that higher temperatures in the nests increase growth and feeding rate, and decrease deleterious repeated cold exposure, providing fitness advantages for P. marioni. Thus, wandering albatrosses may be serving as thermal engineers, modifying temperature and therefore enabling better resource use by P. marioni.
    Print ISSN: 1744-9561
    Electronic ISSN: 1744-957X
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-12-04
    Description: Previously, it has been suggested that insect gas exchange cycle frequency (fC) is mass independent, making insects different from most other animals where periods typically scale as mass−0.25. However, the claim for insects is based on studies of only a few closely related taxa encompassing a relatively small size range. Moreover, it is not known whether the type of gas exchange pattern (discontinuous versus cyclic) influences thefC–mass scaling relationship. Here, we analyse a large database to examine interspecificfC–mass scaling. In addition, we investigate the effect of mode of gas exchange on thefC–scaling relationship using both conventional and phylogenetically independent approaches. Cycle frequency is scaled as mass−0.280(when accounting for phylogeneticnon-independence and gas exchange pattern), which did not differ significantly from mass−0.25. The slope of thefC–mass relationship was shallower with a significantly lower intercept for the species showing discontinuous gas exchange than for those showing the cyclic pattern, probably due to lower metabolic rates in the former. Insects therefore appear no different from other animals insofar as the scaling of gas exchangefCis concerned, although gas exchangefCmay scale in distinct ways for different patterns.
    Print ISSN: 1744-9561
    Electronic ISSN: 1744-957X
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...