ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The Royal Society  (5)
  • 1
    Publication Date: 2017-10-09
    Description: Tactics of resource use for reproduction are an important feature of life-history strategies. A distinction is made between ‘capital’ breeders, which finance reproduction using stored energy, and ‘income’ breeders, which pay for reproduction using concurrent energy intake. In reality, vertebrates use a continuum of capital-to-income tactics, and, for many species, the allocation of capital towards reproduction is a plastic trait. Here, we review how trophic interactions and the timing of life-history events are influenced by tactics of resource use in birds and mammals. We first examine how plasticity in the allocation of capital towards reproduction is linked to phenological flexibility via interactions between endocrine/neuroendocrine control systems and the sensory circuits that detect changes in endogenous state, and environmental cues. We then describe the ecological drivers of reproductive timing in species that vary in the degree to which they finance reproduction using capital. Capital can be used either as a mechanism to facilitate temporal synchrony between energy supply and demand or as a means of lessening the need for synchrony. Within many species, an individual's ability to cope with environmental change may be more tightly linked to plasticity in resource allocation than to absolute position on the capital-to-income breeder continuum. This article is part of the themed issue ‘Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals’.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-01
    Description: The sexes differ in how and when they allocate energy towards reproduction, but how this influences phenotypic plasticity in daily activity patterns is unclear. Here, we use collar-mounted light loggers and triaxial accelerometers to examine factors that affect time spent above ground and overall dynamic body acceleration (ODBA), an index of activity-specific energy expenditure, across the active season of free-living, semi-fossorial arctic ground squirrels ( Urocitellus parryii ). We found high day-to-day variability in time spent above ground and ODBA with most of the variance explained by environmental conditions known to affect thermal exchange. In both years, females spent more time below ground compared with males during parturition and early lactation; however, this difference was fourfold larger in the second year, possibly, because females were in better body condition. Daily ODBA positively correlated with time spent above ground in both sexes, but females were more active per unit time above ground. Consequently, daily ODBA did not differ between the sexes when females were early in lactation, even though females were above ground three to six fewer hours each day. Further, on top of having the additional burden of milk production, ODBA data indicate females also had fragmented rest patterns and were more active during late lactation. Our results indicate that sex differences in reproductive requirements can have a substantial influence on activity patterns, but the size of this effect may be dependent on capital resources accrued during gestation.
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-07-13
    Description: In indigenous arctic reindeer and ptarmigan, circadian rhythms are not expressed during the constant light of summer or constant dark of winter, and it has been hypothesized that a seasonal absence of circadian rhythms is common to all vertebrate residents of polar regions. Here, we show that, while free-living arctic ground squirrels do not express circadian rhythms during the heterothermic and pre-emergent euthermic intervals of hibernation, they display entrained daily rhythms of body temperature ( T b ) throughout their active season, which includes six weeks of constant sun. In winter, ground squirrels are arrhythmic and regulate core body temperatures to within ±0.2°C for up to 18 days during steady-state torpor. In spring, after the use of torpor ends, male but not female ground squirrels, resume euthermic levels of T b in their dark burrows but remain arrhythmic for up to 27 days. However, once activity on the surface begins, both sexes exhibit robust 24 h cycles of body temperature. We suggest that persistence of nycthemeral rhythms through the polar summer enables ground squirrels to minimize thermoregulatory costs. However, the environmental cues (zeitgebers) used to entrain rhythms during the constant light of the arctic summer in these semi-fossorial rodents are unknown.
    Print ISSN: 1744-9561
    Electronic ISSN: 1744-957X
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-09
    Description: Sexual selection favours the expression of traits in one sex that attract members of the opposite sex for mating. The nature of sexually selected traits such as vocalization, colour and ornamentation, their fitness benefits as well as their costs have received ample attention in field and laboratory studies. However, sexually selected traits may not always be expressed: coloration and ornaments often follow a seasonal pattern and behaviours may be displayed only at specific times of the day. Despite the widely recognized differences in the daily and seasonal timing of traits and their consequences for reproductive success, the actions of sexual selection on the temporal organization of traits has received only scant attention. Drawing on selected examples from bird and mammal studies, here we summarize the current evidence for the daily and seasonal timing of traits. We highlight that molecular advances in chronobiology have opened exciting new opportunities for identifying the genetic targets that sexual selection may act on to shape the timing of trait expression. Furthermore, known genetic links between daily and seasonal timing mechanisms lead to the hypothesis that selection on one timescale may simultaneously also affect the other. We emphasize that studies on the timing of sexual displays of both males and females from wild populations will be invaluable for understanding the nature of sexual selection and its potential to act on differences within and between the sexes in timing. Molecular approaches will be important for pinpointing genetic components of biological rhythms that are targeted by sexual selection, and to clarify whether these represent core or peripheral components of endogenous clocks. Finally, we call for a renewed integration of the fields of evolution, behavioural ecology and chronobiology to tackle the exciting question of how sexual selection contributes to the evolution of biological clocks. This article is part of the themed issue ‘Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals’.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-19
    Description: Many studies have addressed the effects of climate change on species as a whole; however, few have examined the possibility of sex-specific differences. To understand better the impact that changing patterns of snow-cover have on an important resident Arctic mammal, we investigated the long-term (13 years) phenology of hibernating male arctic ground squirrels living at two nearby sites in northern Alaska that experience significantly different snow-cover regimes. Previously, we demonstrated that snow-cover influences the timing of phenological events in females. Our results here suggest that the end of heterothermy in males is influenced by soil temperature and an endogenous circannual clock, but timing of male emergence from hibernation is influenced by the timing of female emergence. Males at both sites, Atigun and Toolik, end heterothermy on the same date in spring, but remain in their burrows while undergoing reproductive maturation. However, at Atigun, where snowmelt and female emergence occur relatively early, males emerge 8 days earlier than those at Toolik, maintaining a 12-day period between male and female emergence found at each site, but reducing the pre-emergence euthermic period that is critical for reproductive maturation. This sensitivity in timing of male emergence to female emergence will need to be matched by phase shifts in the circannual clock and responsiveness to environmental factors that time the end of heterothermy, if synchrony in reproductive readiness between the sexes is to be preserved in a rapidly changing climate.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...