ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2017-03-28
    Beschreibung: SUMMARYThe loss of natural habitats is a major threat to biodiversity, and protected area designation is one of the standard responses to this threat. However, greater understanding of the drivers of habitat loss and of the circumstances under which protected areas succeed or fail is still needed. We use visual assessment of satellite images to quantify land-cover change over periods of up to 30 years in and around a matched sample of protected and unprotected Important Bird and Biodiversity Areas (IBAs) in Africa. We modelled the annual survival of forests and other natural land covers as a function of a range of environmental and anthropic predictors of plausible drivers. The best-supported model indicated that survival rates of natural land cover were highest in steeper areas, at higher altitudes, in areas with lower human population densities and in areas where the cover of natural habitats was already higher at the start of the period. Survival rates of natural land cover in protected areas were, on average, around twice those in unprotected areas, but the differences between them varied along different environmental gradients. The overall survival rates of both protected and unprotected forests were significantly lower than those of other natural land-cover types, but the net benefit of protection, in terms of the absolute difference in rates of loss between protected and unprotected sites, was higher in forests. Interaction terms indicated that as slope and altitude increased, the natural protection offered by topography increasingly nullified the additional benefits of legislative protection. Furthermore, protected area designation offered reduced additional benefits to the survival of natural land cover in areas where rates of conversion were higher at the start of the observation period. Variation in the impacts of protected area status along different environmental gradients indicates that targets to improve the world's protected area network, such as Aichi Target 11 of the Convention on Biological Diversity, need to look beyond simple area-based metrics. Our methods and results contribute to the development of a protocol for prioritizing places where protection is likely to have the greatest effect.
    Print ISSN: 0376-8929
    Digitale ISSN: 1469-4387
    Thema: Biologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2005-02-28
    Beschreibung: At the 2002 Johannesburg World Summit on Sustainable Development, 190 countries endorsed a commitment to achieve, by 2010, a significant reduction of the current rate of biodiversity loss at the global, regional and national levels. A wide range of approaches is available to the monitoring of progress towards this objective. The strengths and weaknesses of many of these approaches are considered, with special attention being given to the proposed and existing indicators described in the other papers in this issue. Recommendations are made about the development of indicators. Most existing and proposed indicators use data collected for other purposes, which may be unrepresentative. In the short term, much remains to be done in expanding the databases and improving the statistical techniques that underpin these indicators to minimize potential biases. In the longer term, indicators based on unrepresentative data should be replaced with equivalents based on carefully designed sampling programmes. Many proposed and existing indicators do not connect clearly with human welfare and they are unlikely to engage the interest of governments, businesses and the public until they do so. The extent to which the indicators already proposed by parties to the Convention on Biological Diversity are sufficient is explored by reference to the advice an imaginary scientific consultant from another planet might give. This exercise reveals that the range of taxa and biomes covered by existing indicators is incomplete compared with the knowledge we need to protect our interests. More fundamentally, our understanding of the mechanisms linking together the status of biodiversity, Earth system processes, human decisions and actions, and ecosystem services impacting human welfare is still too crude to allow us to infer reliably that actions taken to conserve biodiversity and protect ecosystem services are well chosen and effectively implemented. The involvement of social and Earth system scientists, as well as biologists, in collaborative research programmes to build and parameterize models of the Earth system to elucidate these mechanisms is a high priority.
    Print ISSN: 0962-8436
    Digitale ISSN: 1471-2970
    Thema: Biologie
    Publiziert von The Royal Society
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2014-04-05
    Beschreibung: Increasing agricultural productivity to ‘close yield gaps’ creates both perils and possibilities for biodiversity conservation. Yield increases often have negative impacts on species within farmland, but at the same time could potentially make it more feasible to minimize further cropland expansion into natural habitats. We combine global data on yield gaps, projected future production of maize, rice and wheat, the distributions of birds and their estimated sensitivity to changes in crop yields to map where it might be most beneficial for bird conservation to close yield gaps as part of a land-sparing strategy, and where doing so might be most damaging. Closing yield gaps to attainable levels to meet projected demand in 2050 could potentially help spare an area equivalent to that of the Indian subcontinent. Increasing yields this much on existing farmland would inevitably reduce its biodiversity, and therefore we advocate efforts both to constrain further increases in global food demand, and to identify the least harmful ways of increasing yields. The land-sparing potential of closing yield gaps will not be realized without specific mechanisms to link yield increases to habitat protection (and restoration), and therefore we suggest that conservationists, farmers, crop scientists and policy-makers collaborate to explore promising mechanisms.
    Print ISSN: 0962-8436
    Digitale ISSN: 1471-2970
    Thema: Biologie
    Publiziert von The Royal Society
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...