ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (1)
  • The Royal Society  (1)
  • 2015-2019  (1)
  • 1995-1999  (1)
Collection
Years
  • 2015-2019  (1)
  • 1995-1999  (1)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 126 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Chemical differentiation and convective removal of internal heat make the Earth's lithosphere a thermal and a chemical boundary layer. Thin layers of chemically light material form near the Earth's surface and become embedded within the cold thermal boundary layer associated with interior heat removal. The likelihood of near-surface thermal and chemical boundary layer interactions influencing the Earth's thermotectonic evolution prompts the models presented herein. A simplified system, consisting of a chemically light layer within the upper thermal boundary layer of a denser thermally convecting layer, is explored through a suite of numerical experiments to see how its dynamic behaviour differs from similar, well-studied, thermal boundary layer systems. A major cause of differences between the two systems resides in the ability of the deformable near-surface chemical layer to alter the effective upper thermal boundary condition imposed on the convectively unstable layer below. In thermal equilibrium, regions of chemical boundary layer accumulation locally enforce an effectively near-constant heat-flux condition on the thermally convecting layer due to the finite thermal conductivity of chemical boundary layer material. For cases in which chemical accumulations translate laterally above the unstable layer, the thermal coupling condition between chemical boundary layer material and the unstable layer below is one of non-equilibrium type, i.e. the thermal condition at the top of the convectively unstable layer is time-, as well as space-, variable. A second major cause of differences is that, for the thermal/chemical system, chemically induced rheologic variations can offset, or compete with, those due to temperature. More specifically, the presence of chemically weak material can lubricate convective downwellings allowing for enhanced overturn of an, on average, strong upper thermal boundary layer. Both of these factors have low-order effects on internal flow structure and heat loss and lead to dynamic behaviour in which chemical boundary layer deformation is not only driven by flow in the thermally convecting interior layer but also feeds back and alters this flow. Some implications of this, in regard to elucidating how near-surface chemical boundary layer deformation, e.g. continental tectonics, might interact with, and influence, mantle convection, are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-10-01
    Description: Plate tectonics is a particular mode of tectonic activity that characterizes the present-day Earth. It is directly linked to not only tectonic deformation but also magmatic/volcanic activity and all aspects of the rock cycle. Other terrestrial planets in our Solar System do not operate in a plate tectonic mode but do have volcanic constructs and signs of tectonic deformation. This indicates the existence of tectonic modes different from plate tectonics. This article discusses the defining features of plate tectonics and reviews the range of tectonic modes that have been proposed for terrestrial planets to date. A categorization of tectonic modes relates to the issue of when plate tectonics initiated on Earth as it provides insights into possible pre-plate tectonic behaviour. The final focus of this contribution relates to transitions between tectonic modes. Different transition scenarios are discussed. One follows classic ideas of regime transitions in which boundaries between tectonic modes are determined by the physical and chemical properties of a planet. The other considers the potential that variations in temporal evolution can introduce contingencies that have a significant effect on tectonic transitions. The latter scenario allows for the existence of multiple stable tectonic modes under the same physical/chemical conditions. The different transition potentials imply different interpretations regarding the type of variable that the tectonic mode of a planet represents. Under the classic regime transition view, the tectonic mode of a planet is a state variable (akin to temperature). Under the multiple stable modes view, the tectonic mode of a planet is a process variable. That is, something that flows through the system (akin to heat). The different implications that follow are discussed as they relate to the questions of when did plate tectonics initiate on Earth and why does Earth have plate tectonics. This article is part of a discussion meeting issue ‘Earth dynamics and the development of plate tectonics’.
    Print ISSN: 1364-503X
    Electronic ISSN: 1471-2962
    Topics: Mathematics , Physics , Technology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...