ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, No. 2 (2012): 80-95, doi:10.5670/oceanog.2012.44.
    Description: Surface tides are the heartbeat of the ocean. Because they are controlled by Earth's motion relative to other astronomical objects in our solar system, surface tides act like clockwork and generate highly deterministic ebb and flow familiar to all mariners. In contrast, baroclinic motions at tidal frequencies are much more stochastic, owing to complexities in how these internal motions are generated and propagate. Here, we present analysis of current records from continental margins worldwide to illustrate that coastal internal tides are largely unpredictable. This conclusion has numerous implications for coastal processes, as across-shelf exchange and vertical mixing are, in many cases, strongly influenced by the internal wave field.
    Description: This work was supported through grants from the US Office of Naval Research and NSF (Nash, Shroyer, Musgrave, Levine, and Duda), by NERC (grant NE/IO30224/1 FASTNEt; Inall), and by AIMS/CSIRO (Kelly and Jones).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2018. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 31(2), (2018):174–181, doi:10.5670/oceanog.2018.219.
    Description: Gradients of heat and salt affect the propagation of sound energy in the ocean. Anticipated changes in oceanic conditions will alter thermohaline conditions globally, thus altering sound propagation. In this context, we examine changes in shallow- water propagation. Because these waters are close to the surface, they will be the earliest to change as the atmospheric state and radiative conditions change. We compare current and possible future propagation patterns near fronts and across fronts on continental shelves. Changes in sound pathways between the deep ocean and coastal regions are also examined, including an example from the Arctic Ocean.
    Description: GG was supported by the Office of Naval Research under grants N00014-16-1-3071 and N00014-16-1-2774.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2011. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 24 no. 4 (2011): 110–121, doi:10.5670/oceanog.2011.99.
    Description: An important element of present oceanographic research is the assessment and quantification of uncertainty. These studies are challenging in the coastal ocean due to the wide variety of physical processes occurring on a broad range of spatial and temporal scales. In order to assess new methods for quantifying and predicting uncertainty, a joint Taiwan-US field program was undertaken in August/September 2009 to compare model forecasts of uncertainties in ocean circulation and acoustic propagation, with high-resolution in situ observations. The geographical setting was the continental shelf and slope northeast of Taiwan, where a feature called the "cold dome" frequently forms. Even though it is hypothesized that Kuroshio subsurface intrusions are the water sources for the cold dome, the dome's dynamics are highly uncertain, involving multiple scales and many interacting ocean features. During the experiment, a combination of near-surface and profiling drifters, broad-scale and high-resolution hydrography, mooring arrays, remote sensing, and regional ocean model forecasts of fields and uncertainties were used to assess mean fields and uncertainties in the region. River runoff from Typhoon Morakot, which hit Taiwan August 7–8, 2009, strongly affected shelf stratification. In addition to the river runoff, a cold cyclonic eddy advected into the region north of the Kuroshio, resulting in a cold dome formation event. Uncertainty forecasts were successfully employed to guide the hydrographic sampling plans. Measurements and forecasts also shed light on the evolution of cold dome waters, including the frequency of eddy shedding to the north-northeast, and interactions with the Kuroshio and tides. For the first time in such a complex region, comparisons between uncertainty forecasts and the model skill at measurement locations validated uncertainty forecasts. To complement the real-time model simulations, historical simulations with another model show that large Kuroshio intrusions were associated with low sea surface height anomalies east of Taiwan, suggesting that there may be some degree of predictability for Kuroshio intrusions.
    Description: We thank the National Science Council of Taiwan as well as the Office of Naval Research for generous support of this effort.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...