ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 3 (2015): 68-83, doi:10.5670/oceanog.2015.58.
    Description: Using data from a number of summer surveys of the Chukchi Sea over the past decade, we investigate aspects in which the benthic fauna, sediment structure, and zooplankton there are related to circulation patterns and shelf hydrographic conditions. A flow speed map is constructed that reveals the major pathways on the shelf. Regions of enhanced flow speed are dictated by lateral constrictions—in particular, Bering Strait and Barrow and Herald Canyons—and by sloping topography near coastlines. For the most part, benthic epifaunal and macrofaunal suspension feeders are found in high flow regimes, while deposit feeders are located in regions of weaker flow. The major exceptions are in Bering Strait, where benthic sampling was underrepresented, and in Herald Canyon where the pattern is inexplicably reversed. Sediment grain size is also largely consistent with variations in flow speed on the shelf. Data from three biophysical surveys of the Chukchi Sea, carried out as part of the Russian-American Long-term Census of the Arctic program, reveal close relationships between the water masses and the zooplankton communities on the shelf. Variations in atmospheric forcing, particularly wind, during the three sampling periods caused significant changes in the lateral and vertical distributions of the summer and winter water masses. These water mass changes, in turn, were reflected in the amounts and species of zooplankton observed throughout the shelf in each survey. Our study highlights the close relationship between physical drivers (wind forcing, water masses, circulation, and sediment type) in the Chukchi Sea and the biological signals in the benthos and the plankton on a variety of time scales.
    Description: MP, RP, and CA were supported by Cooperative Agreement NA17RJ1223 between the National Oceanic and Atmospheric Administration (NOAA) and the Cooperative Institute for Climate and Ocean Research (CICOR) and Cooperative Agreements NA09OAR4320129 and NA14OAR4320158 between NOAA and the Cooperative Institute for the North Atlantic Region. This publication is the result in part of research sponsored by the Cooperative Institute for Alaska Research with funds from NOAA under cooperative agreements NA17RJ1224, NA13OAR4320056, and NA08OAR4320870 with the University of Alaska. KNK and EAE received financial support from the Russian Foundation for Basic Research under Grant 13-04-00551 and Russian Scientific Foundation Grant No. 14-50-00095. JG and LC received financial support from the NOAA Arctic Office (2004: NOAA-CIFAR 10-067; 2004, 2005, 2009 and 2012: NA08OAR4310608), along with NOAA Cooperative Agreement #NA09OAR4320129: WHOI CINAR #19930.00 UMCES.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 3 (2012): 208-213, doi:10.5670/oceanog.2012.64.
    Description: During recent decades, historically unprecedented changes have been observed in the Arctic as climate warming has increased precipitation, river discharge, and glacial as well as sea-ice melting. Additionally, shifts in the Arctic's atmospheric pressure field have altered surface winds, ocean circulation, and freshwater storage in the Beaufort Gyre. These processes have resulted in variable patterns of freshwater export from the Arctic Ocean, including the emergence of great salinity anomalies propagating throughout the North Atlantic. Here, we link these variable patterns of freshwater export from the Arctic Ocean to the regime shifts observed in Northwest Atlantic shelf ecosystems. Specifically, we hypothesize that the corresponding salinity anomalies, both negative and positive, alter the timing and extent of water-column stratification, thereby impacting the production and seasonal cycles of phytoplankton, zooplankton, and higher-trophic-level consumers. Should this hypothesis hold up to critical evaluation, it has the potential to fundamentally alter our current understanding of the processes forcing the dynamics of Northwest Atlantic shelf ecosystems.
    Description: Funding for this research was provided by the National Science Foundation as part of the Regional and Pan-Regional Synthesis Phases of the US Global Ocean Ecosystem (GLOBEC) Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...