ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The Oceanography Society  (14)
  • American Meteorological Society (AMS)
  • 2015-2019  (15)
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © The Oceanography Society, 2016. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 29, no. 2 (2016): 14–17, doi:10.5670/oceanog.2016.34.
    Description: The Bay of Bengal has a surprisingly large influence on the world. It nurtures the South Asian summer monsoon, a tremendous ocean-atmosphere-land phenomenon that delivers freshwater to more than a third of the human population on this planet. During summer, southwesterly winds gather moisture from the ocean and carry it deep inland over the Indian subcontinent, bringing welcome rains to a parched land. During winter, the winds reverse to northeasterly, and the ocean circulation responds by dispersing the terrestrial freshwater runoff concentrated in the northern part of the bay. This freshwater impacts the ocean’s structure, circulation, and biogeochemistry in numerous ways and, through modification of sea surface temperature, feeds back to influence air-sea fluxes. Because the atmosphere obtains its moisture and heat for convection from the ocean, the interplay between ocean and atmosphere is crucial for the development and sustenance of the monsoon.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © The Oceanography Society, 2016. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 29, no. 2 (2016): 50–61, doi:10.5670/oceanog.2016.38.
    Description: Upper-ocean turbulent heat fluxes in the Bay of Bengal and the Arctic Ocean drive regional monsoons and sea ice melt, respectively, important issues of societal interest. In both cases, accurate prediction of these heat transports depends on proper representation of the small-scale structure of vertical stratification, which in turn is created by a host of complex submesoscale processes. Though half a world apart and having dramatically different temperatures, there are surprising similarities between the two: both have (1) very fresh surface layers that are largely decoupled from the ocean below by a sharp halocline barrier, (2) evidence of interleaving lateral and vertical gradients that set upper-ocean stratification, and (3) vertical turbulent heat fluxes within the upper ocean that respond sensitively to these structures. However, there are clear differences in each ocean’s horizontal scales of variability, suggesting that despite similar background states, the sharpening and evolution of mesoscale gradients at convergence zones plays out quite differently. Here, we conduct a qualitative and statistical comparison of these two seas, with the goal of bringing to light fundamental underlying dynamics that will hopefully improve the accuracy of forecast models in both parts of the world.
    Description: We gratefully acknowledge support from the Office of Naval Research, the National Science Foundation, and the Ocean Mixing and Monsoon (OMM) program of the Monsoon Mission of India.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © The Oceanography Society, 2016. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 29, no. 2 (2016): 134–145, doi:10.5670/oceanog.2016.46.
    Description: The structure and variability of upper-ocean properties in the Bay of Bengal (BoB) modulate air-sea interactions, which profoundly influence the pattern and intensity of monsoonal precipitation across the Indian subcontinent. In turn, the bay receives a massive amount of freshwater through river input at its boundaries and from heavy local rainfall, leading to a salinity-stratified surface ocean and shallow mixed layers. Small-scale oceanographic processes that drive variability in near-surface BoB waters complicate the tight coupling between ocean and atmosphere implicit in this seasonal feedback. Unraveling these ocean dynamics and their impact on air-sea interactions is critical to improving the forecasting of intraseasonal variability in the southwest monsoon. To that end, we deployed a wave-powered, rapidly profiling system capable of measuring the structure and variability of the upper 100 m of the BoB. The evolution of upper-ocean structure along the trajectory of the instrument’s roughly two-week drift, along with direct estimates of vertical fluxes of salt and heat, permit assessment of the contributions of various phenomena to temporal and spatial variability in the surface mixed layer depth. Further, these observations suggest that the particular “barrier-layer” stratification found in the BoB may decrease the influence of the wind on mixing processes in the interior, thus isolating the upper ocean from the interior below, and tightening its coupling to the atmosphere above.
    Description: This work was accomplished with Office of Naval Research support under the umbrella of the Air-Sea Interactions Regional Initiative (ASIRI). AJL was specifically supported by ONR Grant N00014-13-1-0489.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © The Oceanography Society, 2016. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 29, no. 2 (2016): 82–91, doi:10.5670/oceanog.2016.41.
    Description: The upper 200 m of the two northern Indian Ocean embayments, the Bay of Bengal (BoB) and the Arabian Sea (AS), differ sharply in their salinity stratification, as the Asian monsoon injects massive amounts of freshwater into the BoB while removing freshwater via evaporation from the AS. The ocean circulation transfers salt from the AS to the BoB and exports freshwater from the BoB to mitigate the salinity difference and reach a quasi-steady state, albeit with strong seasonality. An energetic field of mesoscale features and an intrathermocline eddy was observed within the BoB during the R/V Revelle November and December 2013 Air-Sea Interactions Regional Initiative cruises, marking the early northeast monsoon phase. Mesoscale features, which display a surprisingly large thermohaline range within their confines, obscure the regional surface water and thermohaline stratification patterns, as observed by satellite and Argo profilers. Ocean processes blend the fresh and salty features along and across density surfaces, influencing sea surface temperature and air-sea flux. Comparing the Revelle observations to the Argo data reveals a general westward migration of mesoscale features across the BoB.
    Description: Support for Bay of Bengal research is provided by the Office of Naval Research. ALG award number N00014-14-10065. AM and MF award number N00014-13-10451 and for MF a WHOI summer student fellowship. ES award number N00014-14-10236.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © The Oceanography Society, 2016. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 29, no. 2 (2016): 242–253, doi:10.5670/oceanog.2016.56.
    Description: Because the monsoon strongly affects India, there is a clear need for indigenous expertise in advancing the science that underlies monsoon prediction. The safety of marine transport in the tropics relies on accurate atmospheric and ocean environment predictions on weekly and longer time scales in the Indian Ocean. This need to better forecast the monsoon motivates the United States to advance basic research and support training of early career US scientists in tropical oceanography. Earlier Indian field campaigns and modeling studies indicated that an improved understanding of the interactions between the upper ocean and the atmosphere in the Bay of Bengal at finer spatial and temporal scales could lead to improved intraseasonal monsoon forecasts. The joint US Air-Sea Interactions Regional Initiative (ASIRI) and the Indian Ocean Mixing and Monsoon (OMM) program studied these interactions, resulting in scientific advances described by articles in this special issue of Oceanography. In addition to these scientific advances, and while also developing long-lasting collaborations and building indigenous Indian capability, a key component of these programs is training early career scientists from India and the United States. Training has been focusing on fine-scale and mixing studies of the upper ocean, air-sea interactions, and marine mammal research. Advanced methods in instrumentation, autonomous robotic platforms, experimental design, data analysis, and modeling have been emphasized. Students and scientists from India and the United States at all levels have been participating in joint cruises on Indian and US research vessels and in training participants in modern tools and methods at summer schools, at focused research workshops, and during research visits. Such activities are building new indigenous capability in India, training a new cadre of US scientists well versed in monsoon air-sea interaction, and forging strong links between Indian and US oceanographic institutions.
    Description: We are grateful for the support of the administration of NARA
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © The Oceanography Society, 2016. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 29, no. 2 (2016): 72–81, doi:10.5670/oceanog.2016.40.
    Description: The strong salinity stratification in the upper 50–80 m of the Bay of Bengal affects the response of the upper ocean to surface heat fluxes. Using observations from November to December 2013, we examine the effect of surface cooling on the temperature structure of the ocean in a one-dimensional framework. The presence of freshwater adds gravitational stability to the density stratification and prevents convective overturning, even when the surface becomes cooler than the subsurface. This stable salinity stratification traps heat within subsurface layers. The ocean’s reluctance to release the heat trapped within these subsurface warm layers can contribute to delayed rise in surface temperature and heat loss from the ocean as winter progresses. Understanding the dispersal of freshwater throughout the bay can help scientists assess its potential for generating the anomalous temperature response. We use the Aquarius along-track surface salinity and satellite-derived surface velocities to trace the evolution and modification of salinity in the Lagrangian frame of water parcels as they move through the bay with the mesoscale circulation. This advective tracking of surface salinities provides a Lagrangian interpolation of the monthly salinity fields in 2013 and shows the evolution of the freshwater distribution. The along-trajectory rate of salinification of water as it leaves the northern bay is estimated and interpreted to result from mixing processes that are likely related to the host of submesoscale signatures observed during our field campaigns.
    Description: This work was supported by the Office of Naval Research (grant N000141310451).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: Journal of Physical Oceanography, Ahead of Print. 〈br/〉
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-01-01
    Print ISSN: 1042-8275
    Electronic ISSN: 2377-617X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2016-01-01
    Print ISSN: 1042-8275
    Electronic ISSN: 2377-617X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...