ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The Company of Biologists  (1)
  • 1
    Publication Date: 2024-02-07
    Description: Temperature is a key driver of metabolic rates. So far, we know little about potential physiological adjustments of subtropical corals to seasonal temperature changes (〉8°C) that substantially exceed temperature fluctuation experienced by their counterparts in the tropics. This study investigated the effect of temperature reductions on Montastraea cavernosa and Porites astreoides in Bermuda (32°N; sea surface temperature ∼19–29°C) over 5 weeks, applying the following treatments: (i) constant control temperature at 28°C, and (ii) temperature reduction (0.5°C day−1) followed by constant temperature (20 days; acclimatization period) at 24°C and (iii) at 20°C. Both species decreased photosynthesis and respiration during temperature reduction as expected, which continued to decrease during the acclimatization period, indicating adjustment to a low energy turnover rather than thermal compensation. Trajectories of physiological adjustments and level of thermal compensation, however, differed between species. Montastraea cavernosa zooxanthellae metrics showed a strong initial response to temperature reduction, followed by a return to close to control values during the acclimatization period, reflecting a high physiological flexibility and low thermal compensation. Porites astreoides zooxanthellae, in contrast, showed no initial response, but an increase in pigment concentration per zooxanthellae and similar photosynthesis rates at 24°C and 20°C at the end of the experiment, indicating low acute thermal sensitivity and the ability for thermal compensation at the lowest temperature. Respiration decreased more strongly than photosynthesis, leading to significant build-up of biomass in both species (energy reserves). Results are important in the light of potential poleward migration of corals and of potential latitudinal and species-specific differences in coral thermal tolerance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...