ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-03-28
    Description: Similarities in the behavior of diverse animal species that form large groups have motivated attempts to establish general principles governing animal group behavior. It has been difficult, however, to make quantitative measurements of the temporal and spatial behavior of extensive animal groups in the wild, such as bird flocks, fish shoals, and locust swarms. By quantifying the formation processes of vast oceanic fish shoals during spawning, we show that (i) a rapid transition from disordered to highly synchronized behavior occurs as population density reaches a critical value; (ii) organized group migration occurs after this transition; and (iii) small sets of leaders significantly influence the actions of much larger groups. Each of these findings confirms general theoretical predictions believed to apply in nature irrespective of animal species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Makris, Nicholas C -- Ratilal, Purnima -- Jagannathan, Srinivasan -- Gong, Zheng -- Andrews, Mark -- Bertsatos, Ioannis -- Godo, Olav Rune -- Nero, Redwood W -- Jech, J Michael -- New York, N.Y. -- Science. 2009 Mar 27;323(5922):1734-7. doi: 10.1126/science.1169441.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. makris@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19325116" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Migration ; Animals ; Atlantic Ocean ; *Behavior, Animal ; Ecosystem ; Fishes/*physiology ; Population Density ; Reproduction ; Spatial Behavior ; *Swimming ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-10-23
    Description: Appropriate preferences for light or dark conditions can be crucial for an animal's survival. Innate light preferences are not static in some animals, including the fruit fly Drosophila melanogaster, which prefers darkness in the feeding larval stage but prefers light in adulthood. To elucidate the neural circuit underlying light preference, we examined the neurons involved in larval phototactic behavior by regulating neuronal functions. Modulating activity of two pairs of isomorphic neurons in the central brain switched the larval light preference between photophobic and photophilic. These neurons were found to be immediately downstream of pdf-expressing lateral neurons, which are innervated by larval photoreceptors. Our results revealed a neural mechanism that could enable the adjustment of animals' response strategies to environmental stimuli according to biological needs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gong, Zhefeng -- Liu, Jiangqu -- Guo, Chao -- Zhou, Yanqiong -- Teng, Yan -- Liu, Li -- New York, N.Y. -- Science. 2010 Oct 22;330(6003):499-502. doi: 10.1126/science.1195993.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China. zfgong@moon.ibp.ac.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20966250" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/*radiation effects ; Brain/cytology/physiology ; Drosophila melanogaster/cytology/growth & development/*radiation effects ; Green Fluorescent Proteins ; Larva/physiology/radiation effects ; *Light ; Neural Pathways ; Neurons/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-06-16
    Description: Active DNA demethylation is an important part of epigenetic regulation in plants and animals. How active DNA demethylation is regulated and its relationship with histone modification patterns are unclear. Here, we report the discovery of IDM1, a regulator of DNA demethylation in Arabidopsis. IDM1 is required for preventing DNA hypermethylation of highly homologous multicopy genes and other repetitive sequences that are normally targeted for active DNA demethylation by Repressor of Silencing 1 and related 5-methylcytosine DNA glycosylases. IDM1 binds methylated DNA at chromatin sites lacking histone H3K4 di- or trimethylation and acetylates H3 to create a chromatin environment permissible for 5-methylcytosine DNA glycosylases to function. Our study reveals how some genes are indicated by multiple epigenetic marks for active DNA demethylation and protection from silencing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575687/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575687/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qian, Weiqiang -- Miki, Daisuke -- Zhang, Heng -- Liu, Yunhua -- Zhang, Xi -- Tang, Kai -- Kan, Yunchao -- La, Honggui -- Li, Xiaojie -- Li, Shaofang -- Zhu, Xiaohong -- Shi, Xiaobing -- Zhang, Kangling -- Pontes, Olga -- Chen, Xuemei -- Liu, Renyi -- Gong, Zhizhong -- Zhu, Jian-Kang -- R01 GM059138/GM/NIGMS NIH HHS/ -- R01 GM070795/GM/NIGMS NIH HHS/ -- R01GM059138/GM/NIGMS NIH HHS/ -- R01GM070795/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Jun 15;336(6087):1445-8. doi: 10.1126/science.1219416.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22700931" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Arabidopsis/*genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Chromatin/metabolism ; DNA Glycosylases/metabolism ; *DNA Methylation ; DNA, Plant/*metabolism ; Gene Silencing ; Genes, Plant ; Histone Acetyltransferases/chemistry/genetics/*metabolism ; Histones/metabolism ; Methylation ; Mutation ; Nuclear Proteins/genetics/metabolism ; Protein Structure, Tertiary ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-08-26
    Description: Although statistical mechanics describes thermal equilibrium states, these states may or may not emerge dynamically for a subsystem of an isolated quantum many-body system. For instance, quantum systems that are near-integrable usually fail to thermalize in an experimentally realistic time scale, and instead relax to quasi-stationary prethermal states that can be described by statistical mechanics, when approximately conserved quantities are included in a generalized Gibbs ensemble (GGE). We experimentally study the relaxation dynamics of a chain of up to 22 spins evolving under a long-range transverse-field Ising Hamiltonian following a sudden quench. For sufficiently long-range interactions, the system relaxes to a new type of prethermal state that retains a strong memory of the initial conditions. However, the prethermal state in this case cannot be described by a standard GGE; it rather arises from an emergent double-well potential felt by the spin excitations. This result shows that prethermalization occurs in a broader context than previously thought, and reveals new challenges for a generic understanding of the thermalization of quantum systems, particularly in the presence of long-range interactions.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-08-18
    Description: Leveraging the quantum information-processing ability of superconducting circuits and long-distance distribution ability of optical photons promises the realization of complex and large-scale quantum networks. In such a scheme, a coherent and efficient quantum transducer between superconducting and photonic circuits is critical. However, this quantum transducer is still challenging because the use of intermediate excitations in current schemes introduces extra noise and limits bandwidth. We realize direct and coherent transduction between superconducting and photonic circuits based on the triple-resonance electro-optic principle, with integrated devices incorporating both superconducting and optical cavities on the same chip. Electromagnetically induced transparency is observed, indicating the coherent interaction between microwave and optical photons. Internal conversion efficiency of 25.9 ± 0.3% has been achieved, with 2.05 ± 0.04% total efficiency. Superconducting cavity electro-optics offers broad transduction bandwidth and high scalability and represents a significant step toward integrated hybrid quantum circuits and distributed quantum computation.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...