ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Surveys in geophysics 2 (1975), S. 153-192 
    ISSN: 1573-0956
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract In this survey we consider the atmospheric photodissociation rates of the molecules, O2, O3, NO, NO2, N2O, N2O5, HNO3, HO2, H2O, H2O2, CO2, CH4, CH2O, SO2, and H2S. Data for the absorption cross sections and quantum yields of these molecules are assembled here along with other information pertinent to the determination of photodissociation rates. The most recent techniques for computing atmospheric photodissociation rates are discussed. Photodissociation rates for all of the molecules are given at several solar zenith angles for altitudes up to 100 kilometres. A knowledge of the photodissociation rates of atmospheric molecules is essential to the resolution of many important atmospheric problems. Pollution of the stratosphere by high-flying aircraft, and of the troposphere by other anthropogenic activities, can only be described in terms of complex photochemical-dynamical models in which photolytic processes have a dominant role. A great deal of scientific effort is presently being spent in determining the mechanisms which control ozone, nitric oxide, and excited molecular oxygen concentrations in the mesosphere. Photolytic processes are already known to be important to all of these species. The photodissociation rates presented here can be applied directly to atmospheric problems such as these, or the methodology and data contained in this work can be used to compute photorates as needed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 7 (1988), S. 287-315 
    ISSN: 1573-0662
    Keywords: Aerosols ; stratosphere ; polar stratospheric clouds
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We present a theory for the formation of frozen aerosol particles in the Antarctic stratosphere, the coldest region of the Earth's stratosphere. The theory is applied specifically to the formation of polar stratospheric clouds. We suggest that the condensed ices are composed primarily of nitric acid and water with small admixtures of other compounds such as H2SO4 and HCl in solid solution. Our assumed particle formation mechanism is in agreement with the magnitude and seasonal behavior of the optical extinctions observed in the winter polar stratosphere. Physical chemistry and thermodynamic considerations suggest that at temperatures between about 200 and 185 K, stratospheric particulates are composed primarily of frozen nitric acid solutions with a composition near that of the trihydrate. Available data suggest the particles are amorphous solid solutions and not in the crystalline hydrate form. At lower temperatures (i.e., below the forst point of pure water) cirrus-like ice clouds can form.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 12 (1991), S. 319-366 
    ISSN: 1573-0662
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A one-dimensional model of polar stratospheric cloud (PSC) formation and evolution during the polar winter, incorporating both HNO3 and H2O condensation, has been developed to investigate the interactions between Type I and Type II PSCs and the effects of these clouds on the stratospheric composition. Model simulations for various meteorological conditions and the results of extensive sensitivity tests are presented. Temperature oscillations, which have been included in the model, are shown to have an important influence on the characteristics and effects of the PSCs. The predicted proportions of the PSCs are consistent with observations of number, size, and optical effects, such as depolarization. Denitrification of stratospheric air by 35–88% is shown to occur in the presence of both Type I and Type II PSCs, with comparable nitrate removal in both types of clouds. Dehydration by Type II clouds simultaneously removes similar percentages of water vapour, up to 79% at lower altitudes. Altough dehydration is insensitive to most of the parameter variations except the minimum temperature, the process of denitrification, especially the proportion removed by Type I PSCs, is highly variable.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1991-05-01
    Print ISSN: 0167-7764
    Electronic ISSN: 1573-0662
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1988-10-01
    Print ISSN: 0167-7764
    Electronic ISSN: 1573-0662
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...