ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4919
    Keywords: heart ; atrium ; rat ; function ; sex/gender ; isometric contraction ; force ; calcium sensitivity ; myofibrillar ATPase ; adrenergic agonists ; isoproteronol ; phenylephrine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract A number of investigations in humans and animals suggest that there may be intrinsic sex-associated differences in cardiac function. Using left atrial preparations from male and female rat hearts, we examined differences in myocardial function and response to adrenergic agonists. Contractile parameters were measured in isolated atria by conventional isometric methods in the absence or presence of isoproterenol or phenylephrine. Responsiveness to Ca2+ was measured in detergent-skinned atrial fibers and actomyosin ATPase activity was measured in isolated myofibrils. Tetanic contractions were generated by treating the atrium with ryanodine followed by high frequency stimulation. Developed force was greater and maximal rates of contraction and relaxation were more rapid in the female atrium. The relationship between Ca2+ concentration and force in both intact atria and detergent-skinned atrial fibers in females fell to the left of that for males. At low Ca2+ concentrations, skinned fibers from female atria generated more force and myofibrils from female atria had higher myosin ATPase activity than males. Tetanic contraction in the presence of high extracellular Ca2+ was greater in female atria. Male atrium had larger inotropic responses to isoproterenol and to phenylephrine, but drug-elicited cAMP and inositol phosphate production did not differ between sexes. The results demonstrate sex-related differences in atrial function that can be partially explained by greater myofibrillar Ca2+-sensitivity in females. A potential contribution of sarcolemmal Ca2+ influx is suggested by greater tetanic contraction in ryanodine-treated female atrium. The larger response of males to adrenergic stimulation does not appear to be explained by higher production of relevant second messengers. Future studies will investigate the role of sex hormones in these sexually dimorphic responses and may indicate a need for gender-specific therapeutic interventions for myocardial dysfunction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1536
    Keywords: Key words Monolayers ; bidimensional compatibility ; miscibility ; MacroDerm A ; MacroDerm L ; penetration enhancers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  Spread monolayers of two new skin permeation enhancers, MacroDerm A and MacroDerm L were investigated at the water/air interface as a function of temperature and of subphase composition. Both components did not seem to be markedly affected by changes in ionic strength and by the presence of metal ions in the subphase. The two-dimensional binary system MacroDerm A –MacroDerm L was also studied at the water/air interface at 298 K on pure water subphase. The behavior of surface areas, surface compressional moduli and collapse pressure as a function of molar ratios of components shows that MacroDerm A and MacroDerm L are miscible.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1435-1536
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of inclusion phenomena and macrocyclic chemistry 34 (1999), S. 69-84 
    ISSN: 1573-1111
    Keywords: β-cyclodextrin ; α-aminoacids ; pentapeptides ; inclusion complexes ; host–guest interaction ; molecular simulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A computational study of host-guest inclusion complexes between β-cyclodextrin (β-CD) and the 20 natural L-α-aminoacids and some selected pentapeptides was carried out and aimed at understanding the nature of the driving forces and mechanism leading to their formation. Relative complexation energies for the complexes with β-CD were calculated in both cases and the solvation Gibbs free energies were also evaluated for the single L-α-aminoacids. The computed results indicate strong possibilities of formation of inclusion complexes between β-CD and single L-α-aminoacids as well as pentapeptides which have hydrophobic side chains. In addition, noteworthy interactions of the side chain of the pentapeptides with the β-CD were also elucidated. A detailed molecular dynamics calculation of one of the representative pentapeptide/β-CD inclusion complex (β-CD/CH3-Ala-Ala- TYR-Ala-Ala-CH3) in aqueous solution has also been carried out. Molecular dynamics calculations support aspects connected with the formation and description of hydrogen bonds and with the role of dispersion forces in the inclusion complex in water.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of polymers and the environment 1 (1993), S. 167-170 
    ISSN: 1572-8900
    Keywords: Polyethylene-starch ; composting degradation ; polyethylene microbial oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Two series of starch-filled polyethylene films, consisting of high-density or low-density polyethylene and 0–20% starch, have been exposed for 60 days to a controlled composting environment. Evidence is reported that the oxidation of the polyethylene matrix is dependent upon the polyethylene type and content of starch.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 89 (1989), S. 163-167 
    ISSN: 1573-4919
    Keywords: heart ; acidosis ; troponin ; neonatal ; development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract When the (pHi) surrounding myofilaments of striated muscle is reduced there is an inhibition of both the actin-myosin reaction as well as the Ca2+-sensitivity of the myofilaments. Although the mechanism for the effect of acidic pH on Ca2+-sensitivity has been controversial, we have evidence for the hypothesis that acidic pH reduces the affinity of troponin C (TNC) for Ca2+. This effect of acidic pH depends not only on a direct effect of protons on Ca2+-binding to TNC, but also upon neighboring thin filament proteins, especially TNI, the inhibitory component of the TN complex. Using flourescent probes that report Ca2+-binding to the regulatory sites of skeletal and cardiac TNC, we have shown, for example, that acidic pH directly decreases the Ca2+-affinity of TNC, but only by a relatively small amount. However, with TNC in whole TN or in the TNI-TNC complex, there is about a 2-fold enhancement of the effects of acidic pH on Ca2+-binding to TNC. Acidic pH decreases the affinity of skeletal TNI for skeletal TNC, and also influences the micro-environment of a probe postioned at Cys-133 of TNI, a region of interaction with TNC. Other evidence that the effects of acidic pH on Ca2+-TNC activation of myofilaments are influenced by TNI comes from studies with developing hearts. In contrast, to the case with the adult preparations, Ca2+-activation of detergent extracted fibers prepared from dog or rat hearts in the peri-natal period are weakly affected by a drop in pH from 7.0 to 6.5. This difference in the effect of acidic (pHi) appears to be due to a difference in the isoform population of TNI, and not to differences in isotype population or amount of TNC.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-4919
    Keywords: E-1020 ; calcium sensitivity ; myofibrillar ATPase activity ; skinned fiber bundles ; isometric tension
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract E-1020 is a cardiotonic agent that acts as a cyclic-AMP phosphodiesterase inhibitor but also may have actions which alter myofilament response to Ca2+. To identify direct actions of E-1020 on cardiac contractile proteins, effects of E-1020 on myofibrillar Ca2+ dependent MgATPase and force generation in chemically skinned fiber bundles were measured. In bovine cardiac myofibrils, E-1020 (100 μM) significantly increased myofilament Ca2+ sensitivity and Ca2+-dependent ATPase activity at submaximal pCa values. At pCa 6.75, E-1020 significantly increased ATPase activity in bovine (10–100 pM) and canine (1–100 pM) cardiac myofibrils but had no effect on rat cardiac myofibrils. Moreover, in one population of canine ventricular fiber bundles, E-1020 (0.0–10 μM) significantly increased isometric tension at pCa 6.5 and 6.0, whereas in another population of bundles E-1020 had no effect on tension. In no case was resting (pCa 8.0) or maximal tension (pCa 4.5) increased by E-1020. Measurements of Ca2+ binding to canine ventricular skinned fiber preparations demonstrated that E-1020 does not alter the affinity of myofilament troponin C for Ca2+. We conclude that part of the mechanism by which E-1020 acts as an inotropic agent may involve alterations in the responsiveness of contractile proteins to Ca2+. The lack of effect of E-1020 on some preparations may be dependent on isoform populations of myofilament proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-4919
    Keywords: pimobendan ; calcium sensitivity ; skinned fiber bundles ; heart failure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract UD-CG 212 Cl, (Fig. 1: 4,5-dihydro-6-[2-(4-hydroxyphenyl)-1H-benzimidazole-5-yl]-5-methyl-3(2H)-pyrid azinone), is the primary metabolite of the positive inotropic agent pimobendan (UDCG 115 BS, Acardi®). Our previous studies [16] showed in detergent extracted preparations of canine ventricular muscle that sub-nanomolar concentrations of UD-CG 212 Cl increased submaximal myofilament force, but only when the activation state had been altered by relatively high (5-10 mM) concentrations of inorganic phosphate (Pi) or relatively low (20 µM) concentrations of MgATP. In the present study, we investigated the effects of UD-CG 212 Cl on the pCa-force relationship of detergent extracted bundles of human cardiac fibers before and after addition of Pi. As expected, treatment with 5 mM Pi depressed maximal force at pCa 4.5 by 27.0 ± 0.4% (mean ± SEM). Force generated at the half-maximally activating Ca2+ concentration (pCa50) of control fibers (5.98 ± 0.2) was significantly (p 〈 .05) reduced following the addition of 5 mM Pi (pCa50 = 5.69 ± 0.3). The addition of UD-CG 212 Cl over a range of concentrations (10--11〉-10--6 M) had no effect on Ca2+-sensitivity under control conditions, but in the presence of 5 mM Pi, there was a 23.1 ± 0.1% increase in the percent maximal force at pCa5.9. Ca2+-sensitivity was also significantly increased in the presence of Pi and 10-8 M UD-CG 212 Cl (pCa50 = 5.74 ± 0.3, p 〈 .05). We conclude that UD-CG 212 Cl potentially increases sub-maximal force of human ventricular myofilaments with an inotropic action depending on a state of myofilament activation associated with ischemic conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 28 (2000), S. 991-1001 
    ISSN: 1573-9686
    Keywords: Integrative physiology ; Cardiac pump function ; Hypertrophy ; Congestive heart failure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract The syndrome of congestive heart failure (CHF) is an entity of ever increasing clinical significance. CHF is characterized by a steady decrease in cardiac pump function, which is eventually lethal. The mechanisms that underlie the decline in cardiac function are incompletely understood. A central theme in solving the mystery of heart failure is the identification of mechanisms by which the myofilament contractile machine of the myocardium is altered in CHF and how these alterations act in concert with pathways that signal cell growth and death. The cardiac myofilaments are a point of confluence of signals that promote the hypertrophic/failure process. Our hypothesis is that a prevailing hemodynamic stress leads to an increased strain on the myocardium. The increased strain in turn leads to miscues of the normal physiological pathway by which heart cells are signaled to match and adapt the intensity and dynamics of their mechanical activity to prevailing hemodynamic demands. These miscues result in a maladaptation to the stressor and failure of the heart to respond to hemodynamic loads at optimal end diastolic volumes. The result is a vicious cycle exacerbating the failure. Cardiac myofilament activity, the ultimate determinant of cellular dynamics and force, is a central player in the integration and regulation of pathways that signal hypertrophy and failure. © 2000 Biomedical Engineering Society. PAC00: 8719Hh, 8719Ff, 8719Xx, 8719Rr, 8717-d
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1978-11-01
    Print ISSN: 0372-820X
    Electronic ISSN: 1435-1536
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...