ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Mineralogy and petrology 14 (1970), S. 141-153 
    ISSN: 1438-1168
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Summary Chess-board oligoclase (Ab83An17) was found in gneisses of a low-grade amphibolite facies zone of the Zillertaler Alps (Tyrol, Austria). This plagioclase was formed by metasomatic replacement of premetamorphic potassium feldspar by oligoclase. The replacement process can be represented by the following reaction: $$\begin{gathered} 1,17KAlSi_3 O_8 + 0,17Ca^{2 + } + 0,83Na^ + \to \hfill \\ \to (0,17CaAl_2 Si_2 O_8 /0,83NaAlSi_3 O_8 ) + 0,68SiO_2 + 1,17K^ + \hfill \\ \end{gathered} $$ The validity of the above reaction was confirmed by results of modal analysis from thin sections. Optical and X-ray data of the chess-board oligoclase correspond to those observed in ordered oligoclase (Ab83An17).
    Notes: Zusammenfassung Schachbrettoligoklas (Ab83An17) wurde erstmals in alpidisch metamorphen Gneisen der Zillertaler Alpen (Tirol, Österreich) gefunden. Er entstand durch metasomatische Verdrängungen von prämetamorphem Kalifeldspat I durch Oligoklas ausschließlich im Bereich der niedrig temperierten Amphibolitfazies (B 2.1 nachWinkler, 1967) gemäß der Reaktionsgleichung: $$\begin{gathered} 1,17KAlSi_3 O_8 + 0,17Ca^{2 + } + 0,83Na^ + \to \hfill \\ \to (0,17CaAl_2 Si_2 O_8 /0,83NaAlSi_3 O_8 ) + 0,68SiO_2 + 1,17K^ + \hfill \\ \end{gathered} $$ Die Gültigkeit dieser Reaktionsgleichung ist durch die Integration des Schachbrettoligoklases und seiner amöboiden Quarz-Einschlüsse in Dünnschliffen bestätigt worden. Schachbrettoligoklas entspricht in seinen optischen und röntgenographischen Daten maximal geordnetem Oligoklas (Ab83An17).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 71 (1982), S. 280-290 
    ISSN: 1437-3262
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Abstract The Archaean craton of southern India is characterized by a highly complicated and not yet fully understood geological history comprizing several cycles of sedimentation and volcanism, deformation and metamorphism in the span between about 3400 and 2500 m. y. The large scale regional variation in metamorphic grade observed today is essentially related to a metamorphic event at about 2600 m. y. ago which affected an older migmatite, gneiss-greenstone terrain (2900–3400 m. y.). The southern area is characterized by granulite facies (700–750° C/8–10 kb). An extensive charnockite-khondalite belt has been generated by atectonic transformation of the migmatite-gneiss terrain through the influx of a CO2-rich fluid. Towards the north of the terrain the metamorphic grade decreases to amphibolite facies (600° C/6–8 kb) and to greenschist facies (400° C) which is restricted to the Dharwar greenstone belts. Metamorphism related to younger shear zones in the southern part of the craton led to retrogression of the charnockite-khondalite series under conditions of amphibolite to greenschist facies. The P-T conditions of metamorphism have been evaluated applying mineral stability data and methods of geothermometry and geobarometry in an area between Shimoga-Chitradurga (North) and Coimbatore-Karur (South).
    Abstract: Résumé Le craton archéen de l'Inde méridionale est caractérisé par une évolution géologique complexe et mal connue. Elle comprend plusieurs cycles de sédimentation et de volcanisme, de déformation et métamorphisme d'une durée d'environ 3400 jusqu'à 2500 Ma. La variation du degré de métamorphisme observée aujourd'hui est considérée comme le résultat d'un épisode de métamorphisme datant d'environ 2600 Ma, qui a affecté l'ensemble du domaine archéen composé de granitoïdes et de ceintures de roches vertes. La région méridionale de craton est caractérisée par le faciès granulite (700–750 °C/ 8–10 kb). Une zone étendue de charnockites et khondalites est le produit d'une transformation postdéformative résultant de l'apport d'une phase fluide riche en CO2. Vers le nord le degré de métamorphisme décroit jusqu'au faciès amphibolites (600 °C/6–8 kb) et même jusqu'au faciès schistes verts (400 °C) dans les ceintures dharwariennes de roches vertes. Un épisode tardif de métamorphisme de faciès amphibolites et schistes verts est limité aux zones à décollement intense d'âge protérozoïque. Dans la région méridionale il s'est produit un rétromorphisme des roches granulitiques dans la zone des charnockites et khondalites. Les conditions de pression et température ont été déduites de l'application de données sur la stabilité des minéraux et de méthodes de géothermométrie et de géobarométrie pour la région entre Shimoga-Chitradurga (nord) et Coimbatore-Karur (sud).
    Notes: Zusammenfassung Der archaische Kraton Südindiens ist durch eine komplexe, noch nicht vollständig aufgeklärte geologische Entwicklungsgeschichte gekennzeichnet. Sie umfaßt mehrere Zyklen von Sedimentation und Vulkanismus, Deformation und Metamorphose in der Zeitspanne von etwa 3400 bis 2500 Ma. Die großregionale metamorphe Zonierung wird im wesentlichen als das Ergebnis eines Metamorphose-Ereignisses vor ca. 2600 Ma angesehen, das den gesamten archaischen Komplex aus granitoiden Gneisen, Migmatiten und „Greenstone“-Serien erfaßte. Das südliche Gebiet ist durch Bedingungen der Granulitfazies (700–750° C/8–10 kb) charakterisiert. Hier entstand eine ausgedehnte Charnockit-Khondalit-Zone durch post-tektonische Umwandlung der Migmatit-Gneisserien infolge Zufuhr einer CO2-reichen fluiden Phase. Nach Norden zu nimmt der Metamorphosegrad bis zur niedrigtemperierten Amphibolitfazies (600° C/6–8 kb) und in den Dharwar-„Greenstone Belts“ sogar bis zur Grünschieferfazies (400° C) ab. Eine jüngere Metamorphose von Amphibolit-bis Grünschieferfazies ist auf proterozoische Scherzonen beschränkt. Im südlichen Gebiet führte sie zu einer örtlich unterschiedlich intensiven retrograden Überprägung der Charnockit-Khondalit-Serie. Die P-, T-Bedingungen der Regionalmetamorphose wurden anhand von Mineralstabilitätsdaten und mit Methoden der Geothermometrie und Geobarometrie für das Gebiet zwischen Shimoga-Chitradurga (Norden) und Coimbatore-Karur (Süden) abgeleitet.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Computing 24 (1980), S. 195-202 
    ISSN: 1436-5057
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Description / Table of Contents: Zusammenfassung Es sei $$G \subseteq \mathbb{R}^n $$ . Eine Kugel mit Mittelpunktx und Radiusr sei durch (x, r) bezeichnet. MitK(G) ist die Menge aller inG enthaltenen Kugeln gemeint. Entsprechend istK (ℝ n ) zu verstehen. Zu einer gegebenen Funktionf:G→ℝ m isF:K(G) →K (ℝ m ) eine zentrierte Kugel-Erweiterung, falls ihre Einschränkung auf Kugeln mit Radius 0 gleichf ist und falls der Mittelpunkt der KugelF(x, r) gleichf(x) ist. Sie heißt inklusionsisoton, falls $$G \subseteq \mathbb{R}^n $$ gilt. Es wird die Frage nach Existenz und Eindeutigkeit von inklusionsisotonen zentrierten Kugel-Erweiterungen behandelt. Gezeigt wird, daß aus der Existenz einer solchen Erweiterung die Existenz von unendlich vielen folgt, daß es aber genau eine „kleinste” gibt. Weiter werden hinreichende Bedingungen für die Existenz und für die Nicht-Existenz hergeleitet. Für den Fall, daß der DefinitionsbereichG vonf offen ist, ergeben sich notwendige und hinreichende Bedingungen. Abschließen werden einige Beispiele angegeben.
    Notes: Abstract Let be $$G \subseteq \mathbb{R}^n $$ . A ball with centerx and radiusr is denoted by (x, r). The set of all balls contained inG is writtenK(G). AnalogousK (ℝ n ) is defined. For a given functionf:G→ℝ m isF:K(G) →K (ℝ m ) a centered ball extension if the restriction on balls with radius 0 isf, and the center of the ballF(x, r) is equal tof(x). It is called inclusion isotonic if $$(x,r) \subseteq (y,s) \Rightarrow F(x,r) \subseteq F(y,s)$$ is true. The problem of existence and uniqueness of inclusion isotonic centered ball extensions is treated. It is shown that if only one such an extension is existing, there exist arbitrary many ones, but one and only one “smallest” is given. Further, there are given sufficient conditions of existence and nonexistence. In the case that the domainG off is open sufficient and necessary conditions are found. Finally, some examples finish the paper.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 90 (1985), S. 199-213 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The development of Fe-Ti oxide assemblages in basic rocks from the Penninic series of the southern Venediger rea, Austria, during polyphase Alpine metamorphism has been studied. Textural and compositional relations indicate thorough reequilibration of the opaque mineral assemblages during late Barrovian metamorphism at essentially static conditions of lower amphibolite to greenschist facies. In contrast, silicate mineralogy of the preceeding blueschist to eclogite facies metamorphism might still be preserved to a large extent. Chemical adjustment of the Fe-Ti oxide minerals to decreasing P-T conditions is characterized by (1) formation of complex intergrowths of ilmenite and hematite solid solutions (〈550° C), (2) the decomposition of hemo-ilmenite 1 to ferrianilmenite2+magnetite+rutile and of ilmeno-hematite1 to titanhematite2+rutile±magnetite (〈450° C), and (3) low-grade oxidation of ferrianilmenite2 to magnetite+hematite-rutile intergrowths or hematite +rutile and of titanhematite2 to hematite-rutile intergrowths (≦400° C). Chemical equilibrium is suggested by the regular partitioning of Cr, V, Mg and Mn between coexisting hemo-ilmenite, ilmeno-hematite, and magnetite. The hematite-ilmenite miscibility gap has been delimited on the basis of the bulk compositions of the exsolved phases and the temperature estimates obtained from Fe-Ti oxide thermometry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of economics 59 (1994), S. 237-257 
    ISSN: 1617-7134
    Source: Springer Online Journal Archives 1860-2000
    Topics: Economics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of economics 71 (2000), S. 316-342 
    ISSN: 1617-7134
    Source: Springer Online Journal Archives 1860-2000
    Topics: Economics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The existing experimental data [Ferry and Spear 1978; Perchuk and Lavrent'eva 1983] on Mg−Fe partitioning between garnet and biotite are disparate. The underlying assumption of ideal Mg−Fe exchange between the minerals has been examined on the basis of recently available thermochemical data. Using the updated mixing parameters for the pyrope-almandine asymmetric regular solution as inputs [Ganguly and Saxena 1984; Hackler and Wood 1984], thermodynamic analysis points to non-ideal mixing in the phlogopite-annite binary in the temperature range of 550°C–950°C. The non-ideality can be approximated by a temperature-independent, one constant Margules parameter. The retrieved values for enthalpy of mixing for Mg−Fe biotites and the standard state enthalpy and entropy changes of the exchange reaction were combined with existing thermochemical data on grossular-pyrope and grossular-almandine binaries to obtain geothermometric expressions for Mg−Fe fractionation between biotite and garnet. [T in K] $$\begin{gathered} {\text{T(HW) = [20286 + 0}}{\text{.0193P - \{ 2080(X}}_{{\text{Mg}}}^{{\text{Gt}}} {\text{)}}^{\text{2}} {\text{ - 6350(X}}_{{\text{Fe}}}^{{\text{Gt}}} {\text{)}}^{\text{2}} \hfill \\ {\text{ - 13807(X}}_{{\text{Ca}}}^{{\text{Gt}}} {\text{)(1 - X}}_{{\text{Mn}}}^{{\text{Gt}}} {\text{) + 8540(X}}_{{\text{Fe}}}^{{\text{Gt}}} {\text{)(X}}_{{\text{Mg}}}^{{\text{Gt}}} {\text{)(1 - X}}_{{\text{Mn}}}^{{\text{Gt}}} {\text{)}} \hfill \\ {\text{ + 4215(X}}_{{\text{Ca}}}^{{\text{Gt}}} {\text{)(X}}_{{\text{Mg}}}^{{\text{Gt}}} {\text{ - X}}_{{\text{Fe}}}^{{\text{Gt}}} {\text{)\} + 4441}}{{{\text{(2X}}_{{\text{Mg}}}^{{\text{Bt}}} {\text{ - 1)]}}} \mathord{\left/ {\vphantom {{{\text{(2X}}_{{\text{Mg}}}^{{\text{Bt}}} {\text{ - 1)]}}} {{\text{[13}}{\text{.138}}}}} \right. \kern-\nulldelimiterspace} {{\text{[13}}{\text{.138}}}} \hfill \\ {\text{ + 8}}{\text{.3143 InK}}_{\text{D}} {\text{ + 6}}{\text{.276(X}}_{{\text{Ca}}}^{{\text{Gt}}} ){\text{(1 - X}}_{{\text{Mn}}}^{{\text{Gt}}} )] \hfill \\ {\text{T(GS) = [13538 + 0}}{\text{.0193P - \{ 837(X}}_{{\text{Mg}}}^{{\text{Gt}}} )^{\text{2}} {\text{ - 10460(X}}_{{\text{Fe}}}^{{\text{Gt}}} )^2 \hfill \\ {\text{ - 13807(X}}_{{\text{Ca}}}^{{\text{Gt}}} )(1{\text{ - X}}_{{\text{Mn}}}^{{\text{Gt}}} {\text{) + 19246(X}}_{{\text{Fe}}}^{{\text{Gt}}} ){\text{(X}}_{{\text{Mg}}}^{{\text{Gt}}} ){\text{(1 - X}}_{{\text{Mn}}}^{{\text{Gt}}} ) \hfill \\ {\text{ }}{{{\text{ + 5649(X}}_{{\text{Ca}}}^{{\text{Gt}}} ){\text{(X}}_{{\text{Mg}}}^{{\text{Gt}}} {\text{ - X}}_{{\text{Fe}}}^{{\text{Gt}}} ){\text{\} + 7972(2X}}_{{\text{Mg}}}^{{\text{Bt}}} {\text{ - 1)]}}} \mathord{\left/ {\vphantom {{{\text{ + 5649(X}}_{{\text{Ca}}}^{{\text{Gt}}} ){\text{(X}}_{{\text{Mg}}}^{{\text{Gt}}} {\text{ - X}}_{{\text{Fe}}}^{{\text{Gt}}} ){\text{\} + 7972(2X}}_{{\text{Mg}}}^{{\text{Bt}}} {\text{ - 1)]}}} {{\text{[6}}{\text{.778}}}}} \right. \kern-\nulldelimiterspace} {{\text{[6}}{\text{.778}}}} \hfill \\ {\text{ + 8}}{\text{.3143InK}}_{\text{D}} {\text{ + 6}}{\text{.276(X}}_{{\text{Ca}}}^{{\text{Gt}}} )(1{\text{ - X}}_{{\text{Mn}}}^{{\text{Gt}}} )] \hfill \\ \end{gathered} $$ The reformulated geothermometer is an improvement over existing biotite-garnet geothermometers because it reconciles the experimental data sets on Fe−Mg partitioning between the two phases and is based on updated activity-composition relationship in Fe−Mg−Ca garnet solid solutions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1980-06-01
    Print ISSN: 0010-485X
    Electronic ISSN: 1436-5057
    Topics: Computer Science
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...