ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 35 (2012): 401-415, doi:10.1007/s12237-011-9417-3.
    Description: Although the Arctic Ocean is the most riverine-influenced of all of the world’s oceans, the importance of terrigenous nutrients in this environment is poorly understood. This study couples estimates of circumpolar riverine nutrient fluxes from the PARTNERS (Pan-Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments) Project with a regionally configured version of the MIT general circulation model to develop estimates of the distribution and availability of dissolved riverine N in the Arctic Ocean, assess its importance for primary production, and compare these estimates to potential bacterial production fueled by riverine C. Because riverine dissolved organic nitrogen is remineralized slowly, riverine N is available for uptake well into the open ocean. Despite this, we estimate that even when recycling is considered, riverine N may support 0.5–1.5 Tmol C year−1 of primary production, a small proportion of total Arctic Ocean photosynthesis. Rapid uptake of dissolved inorganic nitrogen coupled with relatively high rates of dissolved organic nitrogen regeneration in N-limited nearshore regions, however, leads to potential localized rates of riverine-supported photosynthesis that represent a substantial proportion of nearshore production.
    Description: Funding for this work was provided through NSFOPP- 0229302 and NSF-OPP-0732985.Support to SET was additionally provided by an NSERC Postdoctoral Fellowship.
    Keywords: Arctic Ocean ; Primary Production ; Land–ocean coupling ; Estuarine processes ; Riverine nutrients ; Dissolved organic matter ; Photodegradation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Biogeochemistry 103 (2011): 109-124, doi:10.1007/s10533-010-9451-4.
    Description: As the planet warms, widespread changes in Arctic hydrology and biogeochemistry have been documented and these changes are expected to accelerate in the future. Improved understanding of the behavior of water-borne constituents in Arctic rivers with varying hydrologic conditions, including seasonal variations in discharge–concentration relationships, will improve our ability to anticipate future changes in biogeochemical budgets due to changing hydrology. We studied the relationship between seasonal water discharge and dissolved organic carbon and nitrogen (DOC and DON) and nutrient concentrations in the upper Kuparuk River, Arctic Alaska. Fluxes of most constituents were highest during initial snowmelt runoff in spring, indicating that this historically under-studied period contributes significantly to total annual export. In particular, the initial snowmelt period (the stream is completely frozen during the winter) accounted for upwards of 35% of total export of DOC and DON estimated for the entire study period. DOC and DON concentrations were positively correlated with discharge whereas nitrate (NO3 −) and silicate were negatively correlated with discharge throughout the study. However, discharge-specific DOC and DON concentrations (i.e. concentrations compared at the same discharge level) decreased over the summer whereas discharge-specific concentrations of NO3 − and silicate increased. Soluble reactive phosphorus (SRP) and ammonium (NH4 +) were negatively correlated with discharge during the spring thaw, but were less predictable with respect to discharge thereafter. These data provide valuable information on how Arctic watershed biogeochemistry will be affected by future changes in temperature, snowfall, and rainfall in the Arctic. In particular, our results add to a growing body of research showing that nutrient export per unit of stream discharge, particularly NO3 −, is increasing in the Arctic.
    Description: Funding provided by the National Science Foundation, NSF-OPP- 0436118.
    Keywords: Arctic ; Stream ; Headwaters ; Carbon ; Nitrogen ; Nutrients
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1435-0629
    Keywords: Key words: nitrogen cycling; macroinvertebrates; stream; nitrogen-15; tracer; model; detritivory; Coweeta Hydrologic Laboratory (North Carolina).
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: ABSTRACT Cycling of nitrogen (N) is commonly studied in aquatic ecosystems; however, most studies examine only parts of the N cycle, such as budgets, N uptake lengths, or oxidative transformations. To integrate conceptually and experimentally several aspects of the N cycle in a stream, we combined a N-cycling model and a tracer addition of nitrogen-15 (15N) to Hugh White Creek, a second-order forested mountain stream in North Carolina (USA). We calibrated a steady-state box model for N cycling in 5-m stream segments that included dissolved, detrital, and biotic compartments. This model was parameterized based on prior studies and used to predict the expected distribution of tracer 15N in all compartments through both time and distance downstream of the addition site. We tested the model results with a 23-day continuous addition of 15N-NH4 + to the stream. Deviations of field data from model predictions suggested areas in which we lacked understanding of the N cycle. Downstream distribution of 15N in epilithon and moss matched model predictions, indicating that our prior estimations of N uptake rates were correct. Leaves and fine detritus contained less label than predicted by the model, yet their consumers had both higher δ15N than predicted and higher δ15N than the detritus itself, suggesting selective assimilation of microbial N from ingested detritus. Splitting fine benthic organic N (FBON) into a microbial and recalcitrant pool gave better predictions of FBON and seston δ15N values relative to field data, yet overestimated invertebrate consumer δ15N possibly because our estimates of the fraction of invertebrate N derived from microbes were too high. We predicted that much of the labeled N would move downstream via FBON suspension and transport. We found that most of the 15N remained near the addition site 33 days after the addition was stopped, suggesting that the stream is highly retentive of particulate N.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 54 (1977), S. 113-127 
    ISSN: 1573-5117
    Keywords: primary production ; phosphorus ; zooplankton phosphorus release ; phosphorus loading ; 14C uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The average annual rate of carbon production in Cayuga Lake, New York, was determined by 14C uptake and by a phosphorus supply method. The rate of phosphorus supply was converted to units of carbon production using observed sestonic C : P ratios. The two methods gave good agreement and annual carbon production was estimated to be 130 gC m−2 yr−1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-515X
    Keywords: 34S ; sulfate reduction ; sulfide oxidation ; SO4 addition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We investigated the effects of sulfate concentration on sulfate reduction and net S storage in lake sediments using34S as a tracer. The water overlying intact sediment cores from the hypolimnion of Mares Pond, MA, was replaced with two Na2 34SO4 solutions at either ambient (70 μM) or elevated (260 μM) sulfate concentrations. The δ34S of the added sulfate was 4974 ‰. Over two months, the net sulfate reduction rate in the ambient sulfate treatment was zero, while the net rate for the high sulfate treatment was 140 μmoles/m2/d. The water overlying the cores was kept under oxic conditions and the sediment received no fresh carbon inputs, thus the net rate reported may underestimate the in situ rate. Gross sulfate reduction rates calculated by isotope dilution were approximately 350 μmoles/m2/d for both treatments. While the calculation of gross sulfate reduction rates in intact sediment cores can be complicated by differential diffusion of34S and32S, isotopic fractionation, and the possible formation of ester sulfates, we believe these effects to be small. The results suggest that sulfate reduction is not strongly sulfate-limited in Mares Pond. The difference in net sulfate reduction rates between treatments resulted from a decrease in sulfide oxidation and suggests the importance of reoxidation in controlling net S storage in lake sediments. In both treatments the CRS and organic S fractions were measurably labelled in34S. Below the sediment surface, the CRS fraction was the more heavily labelled storage product for reduced sulfides.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5117
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Stream discharge and fine suspended sediment load were determined for the upper Kuparuk River, a clear-water tundra stream and tributary of the main Kuparuk River of the North Slope of Alaska. From 75 observations over 3 years we found a range of flows of 0.3 to 28.3 m3 sec−1 and a range of sediment loads of 0.4 to 35 mg liter−1. Specific water yields of 15.7, 29.7 and 33.2 cm and summer specific sediment yields of 0.5, 1.1 and 3.5 metric tons km−2 were estimated for the period 20 May through freeze-up in 1978, 1979 and 1980, respectively. The fine suspended sediment concentrations and yields for the upper Kuparuk River were less than those in many temperate streams but similar to those reported for small rivers draining the taiga of the Mackenzie Valley lowlands in subarctic Canada.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5117
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nitrogen and phosphorus concentrations were measured from May to August 1980 in the upper Kuparuk River, a tundra stream on the North Slope of Alaska. Mean values for nitrogen were 10.8 µg N 1−1 for ammonium, 21.4 µg N 1−1 for nitrate plus nitrite and 248 µg N 1−1 for dissolved organic nitrogen. Mean values for phosphorus were 8.1 µg P 1−1 for total dissolved phosphorus and 4.7 µg P 1−1 for fine particulate phosphorus. Nitrate concentrations were inversely correlated with flow whereas particulate phosphorus concentrations increased during high flows. Export of nitrogen and phosphorus from the watershed during 1980 was estimated to be 4.69, 3.25 and 91 kg km−2 yr−1 for NO3-N, NH4-N and DON-N, respectively, and 2.86 and 3.03 kg km−2 yr−1 for TDP-P and PP-P. Both the relative concentrations of N and P and the relative amounts exported suggest that phosphorus is in short supply but both nutrients are present in low concentrations comparable to those found previously in tundra ponds at Point Barrow, Alaska.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5117
    Keywords: streams ; arctic ; tundra ; epilithon ; photosynthesis ; respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosynthesis and respiration by the epilithic community on cobble in an arctic tundra stream, were estimated from oxygen production and consumption in short-term (4–12 h), light and dark, chamber incubations. Chlorophyll a was estimated at the end of each incubation by quantitatively removing the epilithon from the cobble. Fertilization of the river with phosphate alone moderately increased epilithic chlorophyll a, photosynthesis, and respiration. Fertilization with ammonium sulfate and phosphate, together, greatly increased each of these variables. Generally, under both control and fertilized conditions, epilithic chlorophyll a concentrations (mg m−2), photosynthesis, and respiration (mg O2 m−2, h−1) were higher in pools than in riffles. Under all conditions, the P/R ratio was consistent at ∼ 1.8 to 2.0. The vigor of epilithic algae in riffles, estimated from assimilation coefficients (mg O2 [mg Chl a]−1 h−1) was greater than the vigor of epilithic algae in pools. However, due to the greater accumulation of epilithic chlorophyll a in pools, total production (and respiration) in pools exceeded that in riffles. The epilithic community removed both ammonium and nitrate from water in chambers. Epilithic material, scoured by high discharge in response to storm events and suspended in the water column, removed ammonium and may have increased nitrate concentrations in bulk river water. However, these changes were small compared to the changes exerted by attached epilithon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-06-11
    Print ISSN: 1559-2723
    Electronic ISSN: 1559-2731
    Topics: Geography
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1992-09-01
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...