ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997-11-17
    Print ISSN: 0340-6717
    Electronic ISSN: 1432-1203
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1211
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  Cichlid fishes of the East African Rift Valley lakes constitute an important model of adaptive radiation. Explosive speciation in the Great Lakes, in some cases as recently as 12 400 years ago, generated large species flocks that have been the focus of evolutionary studies for some time. The studies have, however, been hampered by the paucity of biochemical markers for phylogenetic reconstruction. Here, we describe a set of markers which should help to alleviate this problem. They are the class I genes of the major histocompatibility complex. We provide evidence for the existence of at least 17 class I loci in cichlid fishes, and for extensive polymorphism of three of these loci. Since the polymorphism has a trans-species character, it will be possible to use it in investigating the founding events of the individual species. The sequences of the cichlid class I fishes support the monophyly of actinopterygian fish on the one hand, and of tetrapods on the other.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1211
    Keywords: Key words Molecular convergence ; New World monkeys ; HLA-DRB ; Major histocompatibility complex evolution ; Gene conversion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract   In both Old World and New World monkeys Mhc-DRB sequences have been found which resemble human DRB1*03 and DRB3 genes in their second exon. The resemblance is shared sequence motifs and clustering of the genes or the encoded proteins in phylogenetic trees. This similarity could be due to common ancestry, convergence at the molecular level, or chance. To test which of these three explanations applies, we sequenced segments of New World monkey and macaque genes which encompass the entire second exon and large parts of both flanking introns. The test strongly supports the monophyly of New World monkey DRB intron sequences. The phylogenies of introns 1 and 2 from DRB1*03-like and DRB3-like genes are congruent, but both are incongruent with the exon 2-based phylogeny. The matching of intron 1- and intron 2-based phylogenies with each other suggests that reciprocal recombination has not played a major role in exon 2 evolution. Statistical comparisons of exon 2 from different DRB1*03 and DRB3 lineages indicate that it was neither gene conversion (descent), nor chance, but molecular convergence that has shaped their characteristic motifs. The demonstration of convergence in anthropoid Mhc-DRB genes has implications for the classification, age, and mechanism of generation of DRB allelic lineages.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Human genetics 〈Berlin〉 101 (1997), S. 141-148 
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract To determine whether convergent or trans-specific evolution is responsible for the persistence of the ABO polymorphism in apes, we have sequenced segments of introns 5 and 6 of the ABO gene. Four substitutions and one insertion or deletion group human A, B, and O alleles together, separate from their chimpanzee A and gorilla B counterparts. No shared substitutions support a trans-species mode of evolution for any of the alleles examined. We conclude that the A and B antigens of the chimpanzee and gorilla, respectively, have arisen by convergent evolution. Phylogenetic analysis suggests that the human A and B alleles are ancient, having diverged at least 3 million years ago. These alleles must have therefore been trans-specifically inherited within the genus Homo.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The populations that colonized Siberia diverged from one another in the Paleolithic and evolved in isolation until today. These populations are therefore a rich source of information about the conditions under which the initial divergence of modern humans occurred. In the present study we used the HLA system, first, to investigate the evolution of the human major histocompatibility complex (MHC) itself, and second, to reveal the relationships among Siberian populations. We determined allelic frequencies at five HLA class II loci (DRB1, DQA1, DQB1, DPA1, and DPB1) in seven Siberian populations (Ket, Evenk, Koryak, Chukchi, Nivkh, Udege, and Siberian Eskimo) by the combination of single-stranded conformational polymorphism and DNA sequencing analysis. We then used the gene frequency data to deduce the HLA class II haplotypes and their frequencies. Despite high polymorphism at four of the five loci, no new alleles could be detected. This finding is consistent with a conserved evolution of human class II MHC genes. We found a high number of HLA class II haplotypes in Siberian populations. More haplotypes have been found in Siberia than in any other population. Some of the haplotypes are shared with non-Siberian populations, but most of them are new, and some represent “forbidden” combinations of DQA1 and DQB1 alleles. We suggest that a set of “public” haplotypes was brought to Siberia with the colonizers but that most of the new haplotypes were generated in Siberia by recombination and are part of a haplotype pool that is turning over rapidly. The allelic frequencies at the DRB1 locus divide the Siberian populations into eastern and central Siberian branches; only the former shows a clear genealogical relationship to Amerinds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1777
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1777
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The chromosomal region constituting the major histocompatibility complex (MHC) has undergone complex evolution that is often difficult to decipher. An important aid in the elucidation of the MHC evolution is the presence of Alu elements (repeats) which serve as markers for tracing chromosomal rearrangements. As the first step toward the establishment of sets of evolutionary markers for the MHC, Alu elements present in selected MHC haplotypes of the human species, the gorilla, and the chimpanzee were identified. Restriction fragments of cosmid clones from the libraries of the three species were hybridized with Alu-specific probes, Alu elements were amplified by the polymerase chain reaction, and the amplification products were sequenced. In some cases, sequences of the regions flanking the Alu elements were also obtained. Altogether, 31 new Alu elements were identified, representing six Alu subfamilies. The average density of Alu elements in the MHC is one element per four kilobases (kb) of sequence. Alu elements have apparently been inserted steadily into the MHC over the last 65 million years (my). On average, one Alu element is inserted into the primate MHC every 4 my. Analysis of the human DR3 haplotype supports its origin by duplication from an ancestral haplotype consisting of DRB1 and DRB2 genes. The sharing of an old Alu element by the DRB1 and DRB2 genes, in turn, supports their divergence from a common ancestor more than 55 my ago.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...