ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 53 (1975), S. 227-239 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Carbon dioxide solubilities in H2O-free hydrous silicate melts of natural andesite (CA), tholeiite (K 1921), and olivine nephelinite (OM1) compositions have been determined employing carbon-14 beta-track mapping techniques. The CO2 solubility increases with increasing pressure, temperature, and degree of silica-undersaturation of the silicate melt. At 1650° C, CO2 solubility in CA increases from 1.48±0.05 wt % at 15 kbar to 1.95±0.03 wt % at 30 kbar. The respective solubilities in OM1 are 3.41±0.08 wt % and 7.11±0.10 wt %. The CO2 solubility in K1921 is intermediate between those of CA and OM1 compositions. At lower temperatures, the CO2 contents of these silicate melts are lower, and the pressure dependence of the solubility is less pronounced. The presence of H2O also affects the CO2 solubility (20–30% more CO2 dissolves in hydrous than in H2O-free silicate melts); the solubility curves pass through an isothermal, isobaric maximum at an intermediate CO2/(CO2+H2O) composition of the volatile phase. Under conditions within the upper mantle where carbonate minerals are not stable and CO2 and H2O are present a vapor phase must exist. Because the solubility of CO2 in silicate melts is lower than that of H2O, volatiles must fractionate between the melt and vapor during partial melting of peridotite. Initial low-temperature melts will be more H2O-rich than later high-temperature melts, provided vapor is present during the melting. Published phase equilibrium data indicate that the compositional sequence of melts from peridotite +H2O+CO2 parent will be andesite-tholeiite-nephelinite with increasing temperature at a pressure of about 20 kbar. Examples of this sequence may be found in the Lesser Antilles and in the Indonesian Island Arcs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 91 (1985), S. 205-220 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The chemical interaction between fluorine and highly polymerized sodium aluminosilicate melts [Al/(Al+Si)= 0.125–0.250 on the join NaAlO2-SiO2] has been studied with Raman spectroscopy. Fluorine is dissolved to form F− ions that are electrically neutralized with Na+ or Al3+. There is no evidence for association of fluorine with either Si4+ or Al3+ in four-fold coordination and no evidence of fluorine in six-fold coordination with Si4+ in these melt compositions. Upon solution of fluorine nonbridging oxygens are formed and are a part of structural units with nonbridging oxygen per tetrahedral cations (NBO/T) about 2 and 1. The proportions of these two depolymerized units in the melts increase systematically with increasing F/(F+O) at constant Al/(Al+Si) and with decreasing Al/(Al+Si) at constant F/(F+O). Depolymerization (increasing NBO/T) of silicate melts results from a fraction of aluminum and alkalies (in the present study; Na+) reacting to form fluoride complexes. In this process an equivalent amount of Na+ (orginally required for Al-3+charge-balance) or Al3+ (originally required Na+ to exist in tetrahedral coordination) become network-modifiers. The structural data have been used to develop a method for calculating the viscosity of fluorine-bearing sodium aluminosilicate melts at 1 atm. Where experimental viscosity data are available, the calculated and measured values are within 5% of each other. A method is also suggested by which the liquidus phase equilibria of fluorine-bearing aluminosilicate melts may be predicted. In accord with published experimental data it is suggested, for example, that — on the basis of the determined solubility mechanism of fluorine in aluminosilicate melts — with increasing fluorine content of feldspar-quartz systems, the liquidus boundaries between aluminosilicate minerals (e.g., feldspars) and quartz shift away from silica.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 55 (1976), S. 231-239 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 133 (1998), S. 38-50 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The solubility behavior of phosphorus in glasses and melts in the system Na2O-Al2O3-SiO2-P2O5 has been examined as a function of temperature and Al2O3 content with microRaman spectroscopy. The Al2O3 was added (2, 4, 5, 6, and 8 mol% Al2O3) to melts with 80 mol% SiO2 and ∼2 mol% P2O5. The compositions range from peralkaline, via meta-aluminous to peraluminous. Raman spectra were obtained of both the phosphorus-free and phosphorous-bearing glasses and melts between 25 and 1218 °C. The Raman spectrum of Al-free, P-bearing glass exhibits a characteristic strong band near 940 cm−1 assigned to P=O stretching in orthophosphate complexes together with a weaker band near 1000 cm−1 assigned P2O7 complexes. With increasing Al content, the proportion of P2O7 initially increases relative to PO4 and is joined by AlPO4 complexes which exhibit a characteristic P-O stretch mode slightly above 1100 cm−1. The latter complex appears to dominate in meta-aluminosilicate glass and is the only phosphate complex in peraluminous glasses. When P-bearing peralkaline silicate and aluminosilicate glasses are transformed to supercooled melts, there is a rapid decrease in PO4/P2O7 so that in the molten state, PO4 units are barely discernible. The P2O7/AlPO4 abundance ratio in peralkaline compositions increases with increasing temperature. This decrease in PO4/P2O7 with increasing temperature results in depolymerization of the silicate melts. Dissolved P2O5 in peraluminous glass and melts forms AlPO4 complexes only. This solution mechanism has no discernible influence on the aluminosilicate melt structure. There is no effect of temperature on this solution mechanism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 12 (1985), S. 191-200 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract Mossbauer spectroscopy has been used to determine the redox equilibria of iron and structure of quenched melts on the composition join Na2Si2O5-Fe2O3 to 40 kbar pressure at 1400° C. The Fe3+/ΣFe decreases with increasing pressure. The ferric iron appears to undergo a gradual coordination transformation from a network-former at 1 bar to a network-modifier at higher (≧10 kbar) pressure. Ferrous iron is a network-modifier in all quenched melts. Reduction of Fe3+ to Fe2+ and coordination transformation of remaining Fe3+ result in depolymerization of the silicate melts (the ratio of nonbridging oxygens per tetrahedral cations, NBO/T, increases). It is suggested that this pressure-induced depolymerization of iron-bearing silicate liquids results in increasing NBO/T of the liquidus minerals. Furthermore, this depolymerization results in a more rapid pressure-induced decrease in viscosity and activation energy of viscous flow of iron-bearing silicate melts than would be expected for iron-free silicate melts with similar NBO/T.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 12 (1985), S. 65-76 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract A general model for the structural state of iron in a variety of silicate and aluminosilicate glass compositions in the systems Na2O-Al2O3-SiO2-Fe-O, CaO-Al2O3-SiO2-Fe-O, and MgO-Al2O3-SiO2-Fe-O is proposed. Quenched melts with variable Al/Si and NBO/T (average number of nonbridging oxygens per tetrahedrally coordinated cation), synthesized over a range of temperatures and values of oxygen fugacity, are analyzed with57Fe Mössbauer spectroscopy. For oxidized glasses with Fe3+/∑Fe〉0.50, the isomer shift for Fe3+ is in the range ∼0.22–0.33 mm/s and ∼0.36 mm/s at 298 K and 77 K, respectively. These values are indicative of tetrahedrally coordinated Fe3−. This assignment is in agreement with the interpretation of Raman, luminescence, and X-ray,K-edge absorption spectra. The values of the quadrupole splitting are ∼0.90 mm/s (298 K and 77 K) in the Na-aluminosilicate glasses and compare with the values of 1.3 mm/s and 1.5 mm/s for the analogous Ca- and Mg-aluminosilicate compositions. The variations in quadrupole splittings for Fe3+ are due to differences in the degree of distortion of the tetrahedrally coordinated site in each of the systems. The values of the isomer shifts for Fe2+ ions in glasses irrespective of Fe3+/∑Fe are in the range 0.90–1.06 mm/s at 298 K and 1.0–1.15 mm/s at 77 K. The corresponding range of values of the quadrupole splitting is 1.75–2.10 mm/s at 298 K and 2.00–2.35 mm/s at 77 K. The temperature dependence of the hyperfine parameters for Fe2+ is indicative of noninteracting ions, but the values of the isomer shift are intermediate between those values normally attributable to tetrahedrally and octahedrally coordinated Fe2+. The assignment of the isomer-shift values of Fe2+ to octahedral coordination is in agreement with the results of other spectral studies. For reduced glasses (Fe3+/∑Fe≈〈0.50), the value of the isomer shift for Fe3+ at both 298 K and 77 K increases and is linearly correlated with decreasing Fe3+/∑Fe in the range of $$f_{O_2 } $$ between 10−3 and 10−6 atm when a single quadrupole-split doublet is assumed to represent the absorption due to ferric iron. The increase in value of the isomer shift with decreasing $$f_{O_2 } $$ is consistent with an increase in the proportion of Fe3+ ions that are octahedrally coordinated. The concentration of octahedral Fe3+ is dependent on the $$T - f_{O_2 } $$ conditions, and in the range of log $$f_{O_2 } $$ between 10−2.0 and 10−5 a significant proportion of the iron may occur as iron-rich structural units with stoichiometry similar to that of inverse spinels such as Fe3O4, in addition to isolated Fe2+ and Fe3+ ions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 23 (1996), S. 157-172 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract The isostructural lithium (Li2SiO3) and sodium (Na2SiO3) metasilicates have been investigated from room temperature up to the melting point by single-crystal Raman spectroscopy and energy-dispersive X-ray powder diffraction. The unit-cell parameters and Raman frequencies of Li2SiO3 vary regularly with temperature up to the melting point, which is consistent with the lack of premelting effects in calorimetric measurements. In contrast, Na2SiO3 undergoes a transition at about 850 K from orthorhombic Cmc 21 symmetry, to a lower symmetry (possibly Pmc 21), and shows near 1200 K changes in the Raman spectra that correlate well with the premelting effects as determined from calorimetry observations. In both compounds, a high alkali mobility likely sets in several hundreds of degrees below the melting point. Premelting in Na2SiO3 is associated with extensive deformation of the silicate chains as evidenced near the melting point by similarities in the Raman spectra of the crystalline and liquid phases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 25 (1998), S. 401-414 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract  Diopside (CaMgSi2O6) and pseudowollastonite (CaSiO3) have been studied by X-ray powder diffraction and Raman spectroscopy up to their respective melting points. In agreement with previous unit-cell parameters determinations below 1100 K, thermal expansion of diopside along the a and c axis is much smaller than along the b axis. For pseudowollastonite, the axis expansivity increases slightly in the order b〉a〉c. For both minerals, the change in unit-cell angles is very small and there are no anomalous variations of the other unit-cell parameters near the melting point. With increasing temperatures, the main changes observed in the Raman spectra are strong increases of the linewidths for those bands which mainly represent Si−O−Si bending (near 600 cm−1) or involve Ca−O or Mg−O stretching, in the range 270–500 cm−1 for diopside, and 240–450 cm−1 for pseudowollastonite. At temperatures near the onset of calorimetric premelting effects, this extensive band widening results in a broad Raman feature that can no longer be deconvoluted into its individual components. No significant changes affect the Si−O streching modes. For both diopside and pseudowollastonite, premelting appears to be associated with enhanced dynamics of the alkaline-earth elements. This conclusion contrasts markedly with that drawn for sodium metasilicate in which weaker bonding of sodium allows the silicate framework to distort and deform in such a way as to prefigure the silicate entities present in the melt.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 12 (1985), S. 77-85 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract The solubility mechanism of fluorine in quenched SiO2-NaF and SiO2-AlF3 melts has been determined with Raman spectroscopy. In the fluorine abundance range of F/(F+Si) from 0.15 to 0.5, a portion of the fluorine is exchanged with bridging oxygen in the silicate network to form Si-F bonds. In individual SiO4-tetrahedra, one oxygen per silicon is replaced in this manner to form fluorine-bearing silicate complexes in the melt. The proportion of these complexes is nearly linearly correlated with bulk melt F/(F+Si) in the system SiO2-AlF3, but its abundance increases at a lower rate and nonlinearly with increasing F/(F+Si) in the system SiO2-NaF. The process results in the formation ofnonbridging oxygen (NBO), resulting in stabilization of Si2O 5 2− units as well as metal (Na+ or Al3+) fluoride complexes in the melts. Sodium fluoride complexes are significantly more stable than those of aluminum fluoride.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...