ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
  • 4
    Publication Date: 2019-09-23
    Description: The surface sediments of two mud mounds (‘‘Mound 11’’ and ‘‘Mound 12’’) offshore southwest Costa Rica contain abundant authigenic carbonate concretions dominated by high-Mg calcite (14–20 mol-% MgCO3). Pore fluid geochemical profiles (sulfate, sulfide, methane, alkalinity, Ca and Mg) indicate recent carbonate precipitation within the zone of anaerobic oxidation of methane (AOM) at variable depths. The current location of the authigenic carbonate concretions is, however, not related to the present location of the AOM zone, suggesting mineral precipitation under past geochemical conditions as well as changes in the flow rates of upward migrating fluids. Stable oxygen and carbon isotope analysis of authigenic carbonate concretions yielded d18Ocarbonate values ranging between 34.0 and 37.7 % Vienna standard mean ocean water (VSMOW) and d13Ccarbonate values from -52.2 to -14.2 % Vienna Pee Dee belemnite (VPDB). Assuming that no temperature changes occurred during mineral formation, the authigenic carbonate concretions have been formed at in situ temperature of 4–5 °C. The d18Ocarbonate values suggest mineral formation from seawater-derived pore fluid (d18Oporefluid = 0 % VSMOW) for Mound 12 carbonate concretions but also the presence of an emanating diagenetic fluid (d18Oporefluid &5 %) in Mound 11. A positive correlation between d13Ccarbonate and d18Ocarbonate is observed, indicating the admixing of two different sources of dissolved carbon and oxygen in the sediments of the two mounds. The carbon of these sources are (1) marine bicarbonate (d13Cporefluid &0 %) and (2) bicarbonate which formed during the AOM (d13Cporefluid &-70 %). Furthermore, the d18Oporefluid composition, with values up to ?4.7 % Vienna standard mean ocean water (VSMOW), is interpreted to be affected by the presence of emanating, freshened and boronenriched fluids. Earlier, it has been shown that the origin of 18O-enriched fluids are deep diagenetic processes as it was indicated by the presence of methane with thermogenic signature (d13CCH4 = -38 %). A combination of present geochemical data with geophysical observations indicates that Mounds 11 and 12 represent a single fluid system interconnected by deep-seated fault(s).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: We reconstruct past accretion rates of a salt marsh on the island of Sylt, Germany, using measurements of the radioisotopes 210Pb and 137Cs, as well as historical aerial photographs. Results from three cores indicate accretion rates varying between 1 and 16 mm year−1. Comparisons with tide gauge data show that high accretion rates during the 1980s and 1990s coincide with periods of increased storm activity. We identify a critical inundation height of 18 cm below which the strength of a storm seems to positively influence salt marsh accretion rates and above which the frequency of storms becomes the major factor. In addition to sea level rise, we conclude that in low marsh zones subject to higher inundation levels, mean storm strength is the major factor affecting marsh accretion, whereas in high marsh zones with lower inundation levels, it is storm frequency that impacts marsh accretion.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Springer
    In:  In: Encyclopedia of Geobiology. , ed. by Reitner, J. and Thiel, V. Encyclopedia of Earth Sciences Series . Springer, Dordrecht, The Netherlands, pp. 413-416. ISBN 978-1-4020-9211-4
    Publication Date: 2020-08-03
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Continuous surface cores of cold-seep carbonates were recovered offshore Pacific Nicaragua and Costa Rica from 800 to 1,500-m water depths (Meteor 66/3) in order to decipher their evolution and methane enriched fluid emanation in contrasting geological settings. Cores from the mounds Iguana, Perezoso, Baula V and from the Jaco Scarp escarpment were used for a multi-method approach. For both settings aragonite was revealed as dominant authigenic carbonate phase in vein fillings and matrix cementation, followed by Mg-calcite as second most abundant. This common precipitation process of CaCO3 polymorphs could be ascribed as indirectly driven by chemical changes of the advecting pore water due to anaerobic oxidation of methane. A more direct influence of seep-related microbial activity on the authigenic mineral assemblage in both settings is probably reflected by the observed minor amounts of dolomite and a dolomite-like CaMg carbonate (MgCO3 ~ 42 %). δ13C data of Jaco Scarp samples are significantly lower (−43 to −56 ‰ PDB) than for mound samples (−22 to −36 ‰ PDB), indicating differences in fluid composition and origin. Noteworthy, δ18O values of Scarp samples correlate most closely with the ocean signature at their time of formation. Documenting the archive potential, a high resolution case study of a mound core implies at least 40 changes in fluid supply within a time interval of approximately 14 ky. As most striking difference, the age data indicate a late-stage downward-progressing cementation front for all three mound cap structures (approx. 2–5 cm/ky), but a significantly faster upward carbonate buildup in the bulging sediments on top of the scarp environment (approx. 120 cm/ky). The latter data set leads to the hypothesis of chemoherm carbonate emplacement in accord with reported sedimentation rates until decompression of the advective fluid system, probably caused by the Jaco Scarp landslide and dating this to approximately 13,000 years ago.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: Authigenic carbonates and seep biota are archives of seepage history and record paleo-environmental conditions at seep sites. We obtained the timing of past methane release events at the northeastern slope of the South China Sea based on U/Th dating of seep carbonates and seep bivalve fragments from three sites located at 22°02′–22°09′N, 118°43′–118°52′E (water depths from 473 to 785 m). Also, we were able to reconstruct the paleo-bottom water temperatures by calculating the equilibrium temperature using the ages, the corresponding past δ18O of seawater (δ18Osw) and the δ18O of the selected samples formed in contact with bottom seawater with negligible deep fluid influence. A criterion consists of mineralogy, redox-sensitive trace elements and U/Th-isotope systematics is proposed to identify whether the samples were formed from pore water or have been influenced by deep fluid. Our results show that all methane release events occurred between 11.5 ± 0.2 and 144.5 ± 12.7 ka, when sea level was about 62–104 m lower than today. Enhanced methane release during low sea-level stands seems to be modulated by reduced hydrostatic pressure, increased incision of canyons and increased sediment loads. The calculated past bottom water temperature at one site (Site 3; water depth: 767–771 m) during low sea-level stands 11.5 and 65 ka ago ranges from 3.3 to 4.0 °C, i.e., 1.3 to 2.2 °C colder than at present. The reliability of δ18O of seep carbonates and bivalve shells as a proxy for bottom water temperatures is critically assessed in light of 18O-enriched fluids that might be emitted from gas hydrate and/or clay dehydration. Our approach provides for the first time an independent estimate of past bottom water temperatures of the upper continental slope of the South China Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: This study reports a new cold-water coral (CWC) province covering ~410 km2 off western Morocco (ca. 31°N) ~40 nautical miles north of the Agadir Canyon system between 678 and 863 m water depth, here named the Eugen Seibold coral mounds. Individual mounds are up to 12 m high with slope angles varying between 3° and 12°. Hydroacoustic data revealed mound axes lengths of 80 to 240 m. Slope angle, mound height, and density of mounds decrease with increasing water depth. The deepest mounds are composed of dead and fragmented Lophelia pertusa branches. Living CWCs, mainly L. pertusa, were sampled with box cores between 678 and 719 m water depth. Conductivity-temperature-depth (CTD) measurements revealed living CWC colonies to occur within the deeper part of the North Atlantic Central Water (NACW; conservative temperature Θ of 9.78–9.94 °C, absolute salinity SA of ca. 35.632 g/kg, and seawater density σΘ of 27.31–27.33 kg/m3). Comparable CWC reefs off Mauritania (17°N–18°N) and on the Renard Ridge (35°N) in the Gulf of Cadiz, the latter consisting only of a dead CWC fabric, are also located in the deeper layer of the NACW slightly above the Mediterranean Outflow Water. The new CWC province, with its thin cover of living corals and much larger accumulations of dead thickets and fragmented coral rubble, was successfully discovered by CTD reconnaissance applying seawater density as a potential indicator of CWC occurrences, followed by hydroacoustic mapping. U-Th isotope systematics for macroscopically altered buried Lophelia material (25 cm sediment depth) yielded absolute ages dating back to the late Holocene at least.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Excess nutrient supply by the rivers and the atmosphere are considered as the major causes for the persistently poor ecological status of the Baltic Sea. More than 97% of the Baltic Sea still suffers from eutrophication due to past and present inputs of nitrogen and phosphorus. One of the poorly quantified nutrient sources in the Baltic Sea is submarine groundwater discharge (SGD). Through seepage meter deployments and a radium mass balance model, a widespread occurrence of SGD along the coastline of Eckernförde Bay was detected. Mean SGD was 21.6 cm d −1 with a calculated freshwater fraction of 17%. Where SGD was detected, pore water sampled by a piezometer revealed a wide range of dissolved inorganic nitrogen (DIN: 0.05–1.722 µmol L −1 ) and phosphate (PO 4 3− : 0.03–70.5 µmol L −1 ) concentrations. Mean DIN and PO 4 3− concentrations in non-saline (salinity 〈 1) pore waters were 59 ± 68 µmol L −1 and 1.2 ± 1.9 µmol L −1 , respectively; whereas pore water with salinities 〉 1 revealed higher values, 113 ± 207 µmol L −1 and 6 ± 12 µmol L −1 for DIN and PO 4 3− , respectively. The nutrient concentrations along the salinity gradient do not suggest that land-derived groundwater is the definitive source of nutrients in the Baltic Sea. Still, SGD may contribute to a major autochthonous nutrient source, resulting from remineralization or dissolution processes of organic matter in the sediments. The DIN and PO 4 3− fluxes derived from SGD rates through seepage meters are 7.9 ± 9.2 mmol m −2 d −1 and 0.5 ± 0.4 mmol m −2 d −1 , lower by a factor of ~ 2 and ~ 5 when compared to the fluxes derived with the radium mass balance model (mean DIN: 19 ± 28 mmol m −2 d −1 ; mean PO 4 3− : 1.5 ± 2.7 mmol m −2 d −1 ). Assuming that these mean radium-based nutrient fluxes are representative for the coastline of Eckernförde Bay, we arrive at SGD-borne nutrient fluxes of about 1 t km −1 y −1 of nitrogen and 0.2 t km −1 y −1 of phosphorous. These fluxes are lower for DIN and in the same range for phosphorus as compared to the riverine nutrient supply (DIN: 6.3 t km −1 y −1 , P: 0.2 km −1 y −1 ) to the German Baltic Sea identifying SGD-borne nutrients as a secondary nutrient source to the Baltic Sea.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...