ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1420-9136
    Keywords: Key words: Passive seismology, central Mediterranean, Italy, seismic tomography, seismic anisotropy, receiver function, upper mantle structure, geodynamics.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract —In the last decade temporary teleseismic transects have become a powerful tool for investigating the crustal and upper mantle structure. In order to gain a clearer picture of the lithosphere-asthenosphere structure in peninsular Italy, between 1994 and 1996, we have deployed three teleseismic transects in northern, central, and southern Apennines, in the framework of the project GeoModAp (European Community contract EV5V-CT94–0464). Some hundreds of teleseisms were recorded at each deployment which lasted between 3 and 4 months. Although many analyses are still in progress, the availability of this high quality data allowed us to refine tomographic images of the lithosphere-asthenosphere structure with an improved resolution in the northern and central Apennines, and to study the deformation of the upper mantle looking at seismic anisotropy through shear-wave splitting analysis. Also, a study of the depth and geometry of the Moho through the receiver function technique is in progress. Tomographic results from the northernmost 1994 and the central 1995 teleseismic experiments confirm that a high-velocity anomaly (HVA) does exist in the upper 200–250 km and is confined to the northern Apenninic arc. This HVA, already interpreted as a fragment of subducted lithosphere is better defined by the new temporary data, compared to previous works, based only on data from permanent stations. No clear high-velocity anomalies are detected in the upper 250 km below the central Apennines, suggesting either a slab window due to a detachment below southern peninsular Italy, or a thinner, perhaps continental slab of Adriatic lithosphere not detectable by standard tomography. We found clear evidence of seismic anisotropy in the uppermost mantle, related to the main tectonic processes which affected the studied regions, either NE–SW compressional deformation of the lithosphere beneath the mountain belt, or arc-parallel asthenospheric flow (both giving NW–SE fast polarization direction), and successive extensional deformation (∼E–W trending) in the back-arc basin of northern Tyrrhenian and Tuscany. Preliminary results of receiver function studies in the northern Apennines show that the Moho depth is well defined in the Tyrrhenian and Adriatic regions while its geometry underneath the mountain belt is not yet well constrained, due to the observed high complexity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-157X
    Keywords: Seismicity ; Central Italy ; Umbria-Marche ; Aftershock sequence ; seismic crisis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We present the spatio-temporal distribution of more than 2000 earthquakesthat occurred during the Umbria-Marche seismic crisis, between September 26and November 3, 1997. This distribution was obtained from recordings of atemporary network that was installed after the occurrence of the first two largest shocks (Mw =, 5.7, Mw = 6.0) of September 26. This network wascomposed of 27 digital 3-components stations densely distributed in theepicentral area. The aftershock distribution covers a region of about 40 km long and about2 km wide along the NW-SE central Apennines chain. The activity is shallow,mostly located at less than 9 km depth. We distinguished three main zonesof different seismic activity from NW to SE. The central zone, that containsthe hypocenter of four earthquakes of magnitude larger than 5, was the moreactive and the more complex one. Sections at depth identify 40–50°dipping structures that agree well with the moment tensor focalmechanisms results. The clustering and the migration of seismicity from NW to SE and the generalfeatures are imaged by aftershock distribution both horizontally and at depth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-157X
    Keywords: Fault Friction ; Aftershocks ; Fault Interaction ; Seismicity Pattern ; Ground Motions ; Source Parameters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The analysis of the Irpinia earthquake of 3 April 1996 (ML = 4.9), based on strong motion and short period local data, shows that it was a normal faulting event located within the epicentral area of the MS 6.9, 1980, earthquake. It was located at 40.67° N and 15.42° E at a depth of 8 km. The local magnitude (4.9) has been computed from the VBB stations of the MedNet network. The moment magnitude is Mw = 5.1 and the seismic moment estimated from the ground acceleration spectra is 5.0 1023 dyne cm. Spectral analysis of the strong motion recordings yields a Brune stress drop of 111 bars and a corner frequency of 1 Hz. The source radius associated to these values of seismic moment and stress drop is 1.3 km. The focal mechanism has two nodal planes having strike 297°, dip 74°, rake 290° and strike 64°, dip 25° and rake 220°, respectively. A fault plane solution with strike 295° ± 5°, dip 70° ± 5°, and rake 280° ± 10° is consistent with the S-wave polarization computed from the strong motion data recorded at Rionero in Vulture. We discuss the geometry and the dimensions of the fault which ruptured during the 1996 mainshock, its location and the aftershock distribution with respect to the rupture history of the 1980 Irpinia earthquake. The distribution of seismicity and the fault geometry of the 1996 earthquake suggest that the region between the two faults that ruptured during the first subevents of the 1980 event cannot be considered as a strong barrier (high strength zone), as it might be thought looking at the source model and at the sequence of historical earthquakes revealed by paleoseismological investigations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-157X
    Keywords: Site response ; Abruzzo ; underground array
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract In this site response study we examined local earthquakes recorded at surface stations of a local seismic network and at a temporary underground seismic array installed in a tunnel underneath the Gran Sasso Massif in Abruzzo (central Italy). This allowed us to compare the seismic site response beneath the mountain and on the surface in similar geological environment (soft rock sites). We applied spectral ratios method on different segments of the seismograms and used different reference spectra in the 1–20 Hz frequency band. We found little or no amplification effects at most of the surface stations whereas site transfer functions evaluated with respect to underground sites show an amplification factor up to 6 in the 1–8 Hz frequency range. Coda spectral ratios estimated at soft rock sites are confirmed as good estimates of shear wave transfer function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-01-01
    Description: The analysis of the Irpinia earthquake of 3 April 1996 (ML = 4.9), based on strong motion and short period local data, shows that it was a normal faulting event located within the epicentral area of the MS 6.9, 1980, earthquake. It was located at 40.67° N and 15.42° E at a depth of 8 km. The local magnitude (4.9) has been computed from the VBB stations of the MedNet network. The moment magnitude is Mw = 5.1 and the seismic moment estimated from the ground acceleration spectra is 5.0 1023 dyne cm. Spectral analysis of the strong motion recordings yields a Brune stress drop of 111 bars and a corner frequency of 1 Hz. The source radius associated to these values of seismic moment and stress drop is 1.3 km. The focal mechanism has two nodal planes having strike 297°, dip 74°, rake 290° and strike 64°, dip 25° and rake 220°, respectively. A fault plane solution with strike 295° ± 5°, dip 70° ± 5°, and rake 280° ± 10° is consistent with the S-wave polarization computed from the strong motion data recorded at Rionero in Vulture. We discuss the geometry and the dimensions of the fault which ruptured during the 1996 mainshock, its location and the aftershock distribution with respect to the rupture history of the 1980 Irpinia earthquake. The distribution of seismicity and the fault geometry of the 1996 earthquake suggest that the region between the two faults that ruptured during the first subevents of the 1980 event cannot be considered as a strong barrier (high strength zone), as it might be thought looking at the source model and at the sequence of historical earthquakes revealed by paleoseismological investigations.
    Print ISSN: 1383-4649
    Electronic ISSN: 1573-157X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-01-01
    Description: In this site response study we examined local earthquakes recorded at surface stations of a local seismic network and at a temporary underground seismic array installed in a tunnel underneath the Gran Sasso Massif in Abruzzo (central Italy). This allowed us to compare the seismic site response beneath the mountain and on the surface in similar geological environment (soft rock sites). We applied spectral ratios method on different segments of the seismograms and used different reference spectra in the 1-20 Hz frequency band. We found little or no amplification effects at most of the surface stations whereas site transfer functions evaluated with respect to underground sites show an amplification factor up to 6 in the 1-8 Hz frequency range. Coda spectral ratios estimated at soft rock sites are confirmed as good estimates of shear wave transfer function.
    Print ISSN: 1383-4649
    Electronic ISSN: 1573-157X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1998-03-01
    Print ISSN: 0033-4553
    Electronic ISSN: 1420-9136
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...