ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: chalcone synthase ; flavonoid ; flower development ; organ-specific gene expression ; phenylpropanoid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Recent studies on chalcone synthase (CHS) and the related stilbene synthase (STS) suggest that the structure of chs-like genes in plants has evolved into different forms, whose members have both different regulation and capacity to code for different but related enzymatic activities. We have studied the diversity of chs-like genes by analysing the structure, expression patterns and catalytic properties of the corresponding enzymes of three genes that are active during corolla development in Gerbera hybrida. The expression patterns demonstrate that chs-like genes are representatives of three distinct genetic programmes that are active during organ differentiation in gerbera. Gchs1 and gchs3 code for typical CHS enzymes, and their gene expression pattern temporally correlates with flavonol (gchs1, gchs3) and anthocyanin (gchs1) synthesis during corolla development. Gchs2 is different. The expression pattern does not correlate with the pigmentation pattern, the amino acid sequence deviates considerably from the consensus of typical CHSs, and the catalytic properties are different. The data indicate that it represents a new member in the large superfamily of chs and chs-related genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: anthocyanin ; Compositae ; corolla ; dfr ; flower development ; gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In the ornamental cut flower plant Gerbera hybrida the spatial distribution of regulatory molecules characteristic of differentiation of the composite inflorescence is visualized as the various patterns of anthocyanin pigmentation of different varieties. In order to identify genes that the plant can regulate according to these anatomical patterns, we have analysed gene expression affecting two enzymatic steps, chalcone synthase (CHS) and dihydroflavonol-4-reductase (DFR), in five gerbera varieties with spatially restricted anthocyanin pigmentation patterns. The dfr expression profiles vary at the levels of floral organ, flower type and region within corolla during inflorescence development according to the anthocyanin pigmentation of the cultivars. In contrast, chs expression, although regulated in a tissue-specific manner during inflorescence development, varies only occasionally. The variation in the dfr expression profiles between the varieties reveals spatially specific gene regulation that senses the differentiation events characteristic of the composite inflorescence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: Compositae ; dfr ; flavonoid genes ; flower development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We are approaching corolla differentiation in Compositae by studying the regulation of flavonoid pathway genes during inflorescence development in gerbera. We have cloned a dfr cDNA from a ray floret corolla cDNA library of Gerbera hybrida var. Regina by a PCR technique based on homologies found in genes isolated from other plant species. The functionality of the clone was tested in vivo by complementing the dihydrokaempferol accumulating petunia mutant line RL01. By Southern blot analysis, G. hybrida var. Regina was shown to harbour a small family of dfr genes, one member of which was deduced to be mainly responsible for the DFR activity in corolla. Dfr expression in corolla correlates with the anthocyanin accumulation pattern: it is basipetally induced, epidermally specific and restricted to the ligular part of corolla. By comparing the dfr expression in different floret types during inflorescence development, we could see that dfr expression reflects developmental schemes of the outermost ray and trans florets, contrasted with that of the disc florets.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5028
    Keywords: Compositae ; corolla ; flower development ; LTP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We are examining the floral organ differentiation in Compositae by isolating and characterizing corolla abundant genes. Differential screening of a cDNa library made from the ray floret corolla of Gerbera hybrida var. Regina revealed an abundant cDNA clone which is expressed in the corolla but not in leaves. This cDNA (gltp1) codes for a polypeptide similar to non-specific lipid transfer proteins of the plants. The gltp1 gene is expressed only in the corolla and carpels and is developmentally regulated during corolla development. The gltp1 mRNA accumulates both in epidermal cell layers and in the mesophyll of the corolla. In the stylar part of the carpel, the gltp1 mRNA can be detected in the epidermal and in parenchymal cells but not in the transmitting tissue. Analogous patterns of gltp1 expression in the corolla and carpel may indicate that similar genetic programmes operate during the development of these two tissues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1572-9788
    Keywords: antisense ; chalcone synthase ; Gerbera hybrida ; multigene family
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Suppression of gene expression using antisense technology has been successful in various applications. In this paper we report differential inhibition of gene expression of the chalcone synthase (chs) gene superfamily members in transgenic Gerbera hybrida (Asteraceae) plants. We have transformed two different cDNAs of the chs gene family, gchs 1 [4] and gchs2, in antisense orientation under control of the CaMV 35S promoter into gerbera. Gchs1 codes for an enzyme with chalcone synthase activity while gchs2 is a more diverged member of the gene family having distinct structure and expression pattern. Furthermore, gchs2 is evidently not involved in anthocyanin synthesis and encodes an enzyme with novel catalytic properties. In both cases effective blocking of the resident sense gene expression was detected. In addition, the transformation affected differentially the expression of other members of the chs gene family. The degree of inhibition appeared to depend on the sequence homology between the antisense and the target genes. In the unevenly coloured inflorescences detected among anti-gchs1 transformants during their growth, relaxation of the antisense effect was here shown to start from the most distant member of the gene family, further demonstrating the influence of sequence homology in the stability of antisense inhibition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1617-4623
    Keywords: Transgenic plants ; Gene silencing ; Methylation ; GC content
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Petunia mutant RL01 was transformed with maizeA1 and gerberagdfr cDNAs, which both encode dihydroflavonol-4-reductase (DFR) activity. The sameAgrobacterium vector and the same version of the CaMV 35S promoter were used in both experiments. Transformation with the cDNAs resulted in production of pelargonidin pigments in the transformants. However, theA1 andgdfr transformants showed clearly different phenotypes. The flowers of the primaryA1 transformants were pale and showed variability in pigmentation during their growth, while the flowers of thegdfr transformants showed intense and highly stable coloration. The color difference in the primary transformants was reflected in the expression levels of the transgenes as well as in the levels of anthocyanin pigment. As previously reported by others, the instability in pigmentation in theA1 transformants was more often detected in clones with multiple copies of the transgene and was associated with methylation of the 35S promoter and of the transgene cDNA itself. In thegdfr transformants, the most intense pigmentation was observed in plants with multiple transgenes in their genome. Only rarely was partial methylation of the 35S promoter detected, while thegdfr cDNA always remained in an unmethylated state. We conclude that the properties of the transgene itself strongly influence the inactivation process. The dicotyledonousgdfr cDNA with a lower GC content and fewer possible methylation sites is more ‘compatible’ the genomic organization of petunia and this prevents it being recognized as a foreign gene and hence silenced by methylation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-03-02
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...