ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 183 (1998), S. 165-180 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We derive the electron density distribution in the ecliptic plane, from the corona to 1 AU, using observations from 13.8 MHz to a few kHz by the radio experiment WAVES aboard the spacecraft Wind. We concentrate on type III bursts whose trajectories intersect the spacecraft, as determined by the presence of burst-associated Langmuir waves, or by energetic electrons observed by the 3-D Plasma experiment. For these bursts we are able to determine the mode of emission, fundamental or harmonic, the electron density at 1 AU, the distance of emission regions along the spiral, and the time spent by the beams as they proceed from the low corona to 1 AU. For all of the bursts considered, the emission mode at burst onset was the fundamental; by contrast, in deriving many previous models, harmonic emission was assumed. By measuring the onset time of the burst at each frequency we are able to derive an electron density model all along the trajectory of the burst. Our density model, after normalizing the density at 1 AU to be ne(215 R0)=7.2 cm−3 (the average value at the minimum of solar activity when our measurements were made), is ne=3.3×105 r−2+4.1×106 r−4+8.0×107 r−6 cm−3, with r in units of R0. For other densities at 1 AU our result implies that the coefficients in the equation need to be multiplied by n e (1 AU)/7.2. We compare this with existing models and those derived from direct, in-situ measurements (normalized to the same density at 1 AU) and find that it agrees very well with in-situ measurements and poorly with ‘radio models’ based on apparent source positions or assumptions of the emission mode. One implication of our results is that isolated type III bursts do not usually propagate in dense regions of the corona and solar wind, as it is still sometimes assumed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 20 (1971), S. 438-447 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A moving Type IV burst, observed with the Culgoora radioheliograph on 1970 April 29, moved out to about 3 R ⊙ and attained high circular polarization before fading. The appearance of the moving Type IV source suggests an isolated, self-contained, synchrotron emitting plasmoid. Magnetic field maps of the corona derived from photospheric observations indicate that the plasmoid moved almost radially outward from the flare region along open field lines. To explain the observed source structure and high unipolar polarization, we suggest that a ring of electric current was ejected from the low corona and guided by coronal magnetic field lines; the radio emission was synchrotron radiation generated by mildly-relativistic electrons trapped in the poloidal magnetic field of the ring current.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 86 (1983), S. 219-226 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We describe observations of three flares made at 5 and 15 GHz with the VLA, two subflares near the limb on 1981 November 21 and 22, and an M7.7 flare on 1981 May 8. Even though the time histories of the November flares indicated simple impulsive bursts, the VLA observed no 5 GHz radiation at all from one flare, and from the other, the 15 GHz radiation emanated from a source which was smaller, lower and displaced from the 5 GHz source. Without the spatial information, we would have derived incorrect results from the assumption that photons of different energy (both at X-ray and radio wavelengths) arose from one homogeneous volume. The 1981 May 8 flare was intense and complex, having two. or more sources at both 5 and 15 GHz. Prior to the peak of the flare, the sources grew in size to 〉 20″ to 40″, after which they were not visible to the VLA; only (weak) subsources could be seen. These were located between or at the edge of the Hα ribbons and the two hard X-ray sources imaged by the Hinotori. Highly polarized, bursty radiation observed at Toyokawa at 1 and 2 GHz, indicated that an electron-cyclotron maser operated during the flare. We derive 360 to 660 gauss as the maximum field strength in flaring loops.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1971-11-01
    Print ISSN: 0038-0938
    Electronic ISSN: 1573-093X
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1983-07-01
    Print ISSN: 0038-0938
    Electronic ISSN: 1573-093X
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...