ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: In the framework of an ongoing project financed by the Campania Region, a prototype system for seismic early and post-event warning is being developed and tested, based on a dense, wide dynamic seismic network (ISNet) and under installation in the Apennine belt region. This paper reports the characteristics of the seismic network, focussing on the required technological innovation of the different seismic network components (data-logger, sensors and data communication). To ensure a highly dynamic recording range, each station is equipped with two types of sensors: a strong-motion accelerometer and a velocimeter. Data acquisition at the seismic stations is performed using Osiris-6 model data-loggers made by Agecodagis. Each station is supplied with two (120 W) solar panels and two 130 Ah gel cell batteries, ensuring 72-h autonomy for the seismic and radio communication equipment. The site is also equipped with a GSM/GPRS programmable control/alarm system connected to several environmental sensors (door forcing, solar panel controller, battery, fire, etc) and through which the site status is known in real time. The data are stored locally on the hard-disk and, at the same time, continuously transmitted by the SeedLink protocol to local acquisition/analysis nodes (Local Control Center) via Wireless LAN bridge. At each LCC site runs a linux Earthworm system which stores and manages the acquired data stream. The real-time analysis system will perform event detection and localization based on triggers coming from data-loggers and parametric information coming from the other LCCs. Once an event is detected, the system will performs automatic magnitude and focal mechanism estimations. In the immediate post-event period, the RISSC performs shaking map calculations using parameters from the LCCs and/or data from the event database. The recorded earthquake data are stored into an event database, to be available for distribution and visualization for further off-line analyses. The seismic network will be completed in two stages: • Deployment of 30 seismic stations along the southern Apennine chain (to date almost completed) • Setting up a carrier-class radio communication system for fast and reliable data transmission, and installation of 10 additional seismic stations.
    Description: Published
    Description: 325 - 341
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: Monitoring Infrastructure ; Early-warning Applications ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Strong ground-shaking mapping soon after a moderate-to-large earthquake is crucial to recognize the areas that have suffered the largest damage and losses. These maps have a fundamental role for emergency services, loss estimation and planning of emergency actions by the Civil Protection Authorities. This is particularly important for areas with high seismic risk levels, such as the Campania-Lucania Region in southern Italy. Taking advantage of the Irpinia Seismic Network (ISNet), a recently installed dense and wide dynamic seismic network, we have developed a procedure for rapid estimation of ground-shaking maps after moderate-to-large earthquakes (GRSmap). This uses an optimal data gridding scheme designed to account for bi-dimensional features of strong groundmotion fields, such as directivity, radiation patterns and focal mechanisms, to which most damage can be correlated. The basis of the mapping technique is a triangulation procedure to locally correct predicted data at the triangle barycentres where their vertices correspond to seismic stations. The method has been tested off-line using a simulated M 6.6 earthquake located at the centre of ISNet and applied to data of the 23 November 1980 Irpina M 6.9 earthquake recorded by a sparse network. This has highlighted its ability to predict peak ground-motion parameters of large magnitude earthquakes with respect to the attenuation relationships.
    Description: Published
    Description: 97–115
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Ground-shaking maps ; Triangulation scheme ; Seismic source ; Seismic hazard ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...