ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (4)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 47 (1974), S. 281-297 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Most of the Al3+ entering the pyroxenes does so by substituting for tetrahedral Si4+. This creates a charge imbalance that requires the simultaneous entry of Cr3+, Ti4+, Fe3+ or Al3+ into octahedral sites. Cr3+, because of its high crystal field stabilisation energy (CFSE), is the most important of these elements to enter the early-formed pyrosenes but it is replaced by Ti4+ later in fractionation when the Cr3+ content of the melt becomes depleted. The dependence of Cr3+ and Ti4+ on charge balance controls their partition between coexisting pyroxenes and olivines. Ca-rich pyroxene which contains more Al3+ than Ca-poor pyroxene also has more Ti4+ and Cr3+ whereas olivine, which contains negligible Al3+, has low Cr3+ and Ti4+. The Al3+ content of pyroxenes is influenced by changes in P, T, $$a_{{\text{SiO}}_{\text{2}} }$$ and $$a_{{\text{Al}}_{\text{2}} {\text{O}}_{\text{3}} }$$ of the magma and by the nature of the ion providing charge balance in the octahedral site. Of these $$a_{{\text{SiO}}_{\text{2}} }$$ is dominant and variations in the Al3+ content of the Jimberlana pyroxenes correspond closely with the expected changes in the $$a_{{\text{SiO}}_{\text{2}} }$$ of the melt. The substitution of divalent ions, such as Mn2+ and Ni2+, in the pyroxene lattice is by replacement of Fe2+ or Mg2+ in the octahedral M 3 and M 2 sites and is therefore independent of charge balance. If there are no size restrictions, the principal factor to be considered is the CFSE the ion receives in octahedral co-ordination. Ni2+, which receives a high CFSE, partitions strongly between the early-formed pyroxenes and olivines and therefore becomes depleted in the magma with fractionation. Conversely Mn2+, which receives zero CFSE, concentrates in the magma with fractionation and becomes a more important substitute in the later-formed pyroxenes. Its geochemical behaviour is controlled by its size. The narrow miscibility gap of the Jimberlana pyroxenes and the high En content of the Ca-poor pyroxenes at the bronzite pigeonite changeover suggest that these pyroxenes crystallised at a higher temperature than pyroxenes of comparable composition from other intrusions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 31 (1971), S. 102-114 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract 1. Xenoliths of ultrabasic, ultramafic, gabbroic or syenitic type occur in Teneriffe: dunites and clino-pyroxenites in the old alkalic basalt formations of Teno and Anaga peninsulas; gabbroic xenoliths in the Pedro Gil region; nepheline-syenite xenoliths in the Las Canadas and Vilaflor regions where intermediate and phonolitic lavas are abundant; ultramafic, clino-pyroxenite and syenitic xenoliths in the Anaga peninsula where there are many intrusions of nepheline-syenite and phonolitic syenite. Several xenoliths show signs of cataclasis, recrystallisation or reaction of their minerals with the host liquids. 2. The ultrabasic, ultramafic and anorthoclase-rich xenoliths appear to be of cumulus origin, subtracted from basic to intermediate alkalic liquids. Major cumulus phases are: magnesium-rich olivine, sub-silicic, aluminous pyroxene, titanomagnetite, sub-silicic potassic kaersutite, and anorthoclase. It is suggested that the xenoliths formed at depths between 11 km and 30 km, largely under wet conditions that helped suppress formation of cumulus plagioclase. 3. The subtraction of kaersutite from liquids of intermediate composition is thought to be a means of producing the gap in silica content between the Teneriffe trachybasalts and the more siliceous trachyphonolites and phonolites. It is also suggested that the subtraction of kaersutite and anorthoclase would considerably deplete residual liquids in alumina whilst enriching then in soda and this might be the means of producing peralkaline liquids. 4. The presence of the xenoliths supports the geophysical data that indicated that Teneriffe has a sub-crustal structure of plutonic rocks. Correlation of the Teneriffe plutonic xenoliths with exposed plutonic basement rocks from other Canary Islands, which are believed to have similar sub-crustal structures, is considered necessary.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1974-01-01
    Print ISSN: 0010-7999
    Electronic ISSN: 1432-0967
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1971-01-01
    Print ISSN: 0010-7999
    Electronic ISSN: 1432-0967
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...