ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (2)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 6 (1991), S. 1-12 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract In Part I (Storch and Xu 1990) the principal oscillation pattern (POP) analysis of 200 mb equatorial velocity potential leads to the definition of a bivariate (POP-) index of the tropical 30- to 60-day oscillation. Using the POP prediction scheme this index is predictable for a few days in advance. In Part 11, the prediction of the equatorial velocity potential field, made by the POP method and made by two GCMs, is investigated. The POP index forecast can incorporate skillful forecasts of the equatorial velocity potential (χ) field. Its ensemble correlation skill score passes the 0.50 level at 7 days, whereas persistence passes after 3 days. If there is a strong 30- to 60-day oscillation signal in the initial state, useful forecasts of more than 20 days are sometimes possible; if the initial signal is weak, the POP forecast fails. Also, the forecast skill of two GCMs is considered. The NCAR T31 GCM appears to be quite skillful in predicting the equatorial χ-field, and in particular the 30- to 60-day oscillation. Its skill, however, is less than that of the POP scheme. The CNRM T42 GCM seems not to be able to predict the regular development associated with the tropical 30- to 60-day oscillation. The power of the POP index in explaining the equatorial x-field is a measure of the strength and dominance of the 30- to 60-day oscillation. This measure at day 0 is an a priori indicator of the NCAR T31 GCM's skill in predicting the equatorial velocity potential field.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-07-01
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...