ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-02-01
    Description: Submarine groundwater discharge represents a major but poorly constrained component of coastal marine chemical budgets. In the current study, the geochemical behavior of 224Ra, inorganic nitrogen species, and Fe in shallow coastal groundwater was characterized to improve estimates of chemical flux via submarine groundwater discharge (SGD) at a site in the York River estuary, VA (USA). Directly measured SGD rates varied between 3.9 ± 1.2 cm day−1 offshore, and 8.9 ± 2.6 cm day−1 close to shore. A clear inverse relationship was observed between SGD and tidal height, reflecting the hydraulic gradient between groundwater and surface water. Discharge rates varied spatially in conjunction with the subterranean estuary location, and there was a strong inverse correlation between seepage rates and seepage salinity. Dissolved 224Ra activity in the mixing zone reached levels up to 6 dpm L−1 and co-varied with salinity in the groundwater but not in the surface water or seepage water. Instead, a consistent sigmoidal trend of Ra with pH was observed, which matched previous laboratory experiment results. Dissolved NH4 + reached concentrations up to 120 μM in the groundwater and appeared to mix conservatively with respect to salinity in the subterranean estuary. In contrast, NOx (NO2 − + NO3 −) was low in both fresh groundwater and surface water and showed non-conservative enrichment (up to 23 μM) within the subterranean estuary. Dissolved Fe also showed non-conservative excess in the subterranean estuary, reaching concentrations up to 50 μM. SGD-derived chemical fluxes were estimated using several different commonly used approaches: average groundwater concentrations, pore water constituent-salinity trends coupled with directly collected seepage salinity, constituent concentrations in directly collected seepage, and concentrations in shallowest groundwater samples. Different flux estimates were compared with a “variable endmember” approach based on the observed geochemical distribution and inferred behavior.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-09
    Description: Dissolved and particulate metals (Ag, Cd, Co, Cu, Ni, and Zn) and nutrients (PO4, NO3, and H4SiO4) were measured in Todos Santos Bay (TSB) in August 2005. Two sources producing local gradients were identified: one from a dredge discharge area (DDA) and another south of the port and a creek. The average concentrations of dissolved Cd and Zn (1.3 and 15.6 nM, respectively) were higher by one order of magnitude than the surrounding Pacific waters, even during upwelling, and it is attributed to the presence of a widespread and long-lasting red tide coupled with some degree of local pollution. A clear spatial gradient (10 to 6 pM), from coast to offshore, of dissolved Ag was evident, indicating the influence of anthropogenic inputs. The particulate fraction of all metals, except Cu, showed a factor of ~3 decrease in concentrations from the DDA to the interior of the bay. The metal distributions were related to the bay’s circulation by means of a numerical model that shows a basically surface-wind-driven offshore current with subsurface compensation currents toward the coast. Additionally, the model shows strong vertical currents over the DDA. Principal component analysis revealed three possible processes that could be influencing the metal concentrations within TSB: anthropogenic inputs (Cd, Ag, and Co), biological proceses (NO3, Zn, and Cu), and upwelling and mixing (PO4, H4SiO4, Cd, and Ni). The most striking finding of this study was the extremely high Cd concentrations, which have been only reported in highly contaminated areas. As there was a strong red tide, it is hypothesized that the dinoflagellates are assimilating the Cd, which is rapidly remineralized and being concentrated on the stratified surface layers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-09
    Description: Jamaica Bay, NY, is a highly urbanized estuary within the boroughs of New York City conspicuously lacking published information on dissolved trace metal concentrations. The current study examines the distribution and cycling of trace metals in that embayment with data gathered during cruises in November 2004, April 2005, and June 2006. Most of the metal distributions (Fe, Zn, Co, Ag, Cu, Pb, Ni) in the water column are explained by the input of substantial volumes of treated wastewater effluent. However, several lines of evidence suggest that submarine groundwater discharge (SGD) is also an important source of dissolved Fe, Zn, Co, Ni, and isotopically distinct stable Pb ratios (206Pb, 207Pb, 208Pb) in the Bay. Conversely, the recirculated seawater component of SGD is an apparent sink for dissolved Mo. This study provides the first measurements of dissolved trace metals in the Jamaica Bay water column and subterranean estuary and provides evidence for trace metal input due to SGD.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-08
    Description: The effect of phototrophic biofilm activity on advective transport of cadmium (Cd), copper (Cu), nickel (Ni), and lead (Pb) in sandy sediments was examined using percolated columns. Cd and Ni in the effluent exhibited clear diel cycles in biofilm-containing columns, with concentrations at the end of dark periods exceeding those during illumination by up to 4.5- and 10-fold for Ni and Cd, respectively. Similar cycles were not observed for Pb or Cu. Breakthrough of the latter metals was greatly retarded and incomplete relative to Cd and Ni, and trends in biofilm treatments did not differ greatly from those in control columns. Inhibition of photosystem II by DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) proved that diel cycles of Cd and Ni were controlled by oxygenic photosynthesis, and microsensor measurements showed that metal cycles closely matched metabolic activity-driven pH variations. The sorption edge pH for the sand/biofilm substrate followed the order Ni 〉 Cd 〉 Cu 〉 Pb, and for Ni and Cd, was within the pH 7–10 range observed in the biofilm-containing column. Adsorption dynamics over the light periods matched pH increases, but desorption during dark periods was incomplete and slower than the rate of change of pH. Over a diel cycle, desorption was less than adsorption, resulting in net binding of dissolved metals due to the biofilm metabolic activity. Extraction with selective reagents indicated that the adsorbed metals were readily exchangeable, and potentially bioavailable. Thus, phototrophic benthic biofilms can control the transport of some metals across the sand–water interface, and processes in this very thin surficial layer should be considered when evaluating chemical fluxes in permeable sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-08
    Description: This article reports the results of a study of submarine groundwater discharge (SGD) to coastal waters of Majorca (NW Mediterranean). The overall aim is to evaluate the relevance of SGD of the island and chemically characterize the components that are supplied to the coastal waters through this pathway. Although other discharge areas are identified, we particularly focus on SGD in bays and areas of increased sea water residence time where effects of the discharges are expected to be most notable. Analysis at four selected embayments with different land-use characteristics indicated a link between human activities (mainly agriculture and urban) and compounds arriving to the coast. A pathway for these elements is the diffuse discharge along the shoreline, as suggested by the inverse relationship between salinity and nutrients in nearshore porewaters. A general survey was conducted at 46 sites around the island, and used dissolved radium as a qualitative indicator of SGD. Measurements of nutrients (P and N), pCO2 and TOC were performed to characterize the elements delivered to the coastal environment. Most nearshore samples showed 224Ra enrichment (mean ± SE, 7.0 ± 0.6 dpm 100 l−1) with respect to offshore waters (1.1 ± 0.2 dpm 100 l−1); however, 224Ra measurements along the coast were highly variable (1.0–38.1 dpm 100 l−1). Coastal samples with enhanced radium levels showed elevated pCO2 with respect to atmospheric concentrations, which together with high pCO2 in groundwater (〉5,000 ppm) indicates that SGD is an important vector of CO2 to coastal waters. Moreover, a relationship between 224Ra and phytoplankton biomass was established, suggesting an important impact of SGD on coastal productivity. The results presented here provide a first approximation of the SGD effect in the coastal waters of Majorca, and indicate that SGD could be an important source of nutrients and CO2 to the coast, strongly influencing the productivity and biogeochemical cycling of the coastal waters of Majorca.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-10
    Description: Global warming is associated with increasing stress and mortality on temperate seagrass beds, in particular during periods of high sea surface temperatures during summer months, adding to existing anthropogenic impacts, such as eutrophication and habitat destruction. We compare several expressed sequence tag (EST) in the ecologically important seagrass Zostera marina (eelgrass) to elucidate the molecular genetic basis of adaptation to environmental extremes. We compared the tentative unigene (TUG) frequencies of libraries derived from leaf and meristematic tissue from a control situation with two experimentally imposed temperature stress conditions and found that TUG composition is markedly different among these conditions (all P 〈 0.0001). Under heat stress, we find that 63 TUGs are differentially expressed (d.e.) at 25°C compared with lower, no-stress condition temperatures (4°C and 17°C). Approximately one-third of d.e. eelgrass genes were characteristic for the stress response of the terrestrial plant model Arabidopsis thaliana. The changes in gene expression suggest complex photosynthetic adjustments among light-harvesting complexes, reaction center subunits of photosystem I and II, and components of the dark reaction. Heat shock encoding proteins and reactive oxygen scavengers also were identified, but their overall frequency was too low to perform statistical tests. In all conditions, the most abundant transcript (3–15%) was a putative metallothionein gene with unknown function. We also find evidence that heat stress may translate to enhanced infection by protists. A total of 210 TUGs contain one or more microsatellites as potential candidates for gene-linked genetic markers. Data are publicly available in a user-friendly database at http://www.uni-muenster.de/Evolution/ebb/Services/zostera.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-19
    Description: Global population projections foresee the biggest increase to occur in Africa with most of the available uncultivated land to ensure food security remaining on the continent. Simultaneously, greenhouse gas emissions are expected to rise due to ongoing land use change, industrialisation, and transport amongst other reasons with Africa becoming a major emitter of greenhouse gases globally. However, distinct knowledge on greenhouse gas emissions sources and sinks as well as their variability remains largely unknown caused by its vast size and diversity and an according lack of observations across the continent. Thus, an environmental research infrastructure—as being setup in other regions—is more needed than ever. Here, we present the results of a design study that developed a blueprint for establishing such an environmental research infrastructure in Africa. The blueprint comprises an inventory of already existing observations, the spatial disaggregation of locations that will enable to reduce the uncertainty in climate forcing’s in Africa and globally as well as an overall estimated cost for such an endeavour of about 550 M€ over the next 30 years. We further highlight the importance of the development of an e-infrastructure, the necessity for capacity development and the inclusion of all stakeholders to ensure African ownership.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Global population projections foresee the biggest increase to occur in Africa with most of the available uncultivated land to ensure food security remaining on the continent. Simultaneously, greenhouse gas emissions are expected to rise due to ongoing land use change, industrialisation, and transport amongst other reasons with Africa becoming a major emitter of greenhouse gases globally. However, distinct knowledge on greenhouse gas emissions sources and sinks as well as their variability remains largely unknown caused by its vast size and diversity and an according lack of observations across the continent. Thus, an environmental research infrastructure-as being setup in other regions-is more needed than ever. Here, we present the results of a design study that developed a blueprint for establishing such an environmental research infrastructure in Africa. The blueprint comprises an inventory of already existing observations, the spatial disaggregation of locations that will enable to reduce the uncertainty in climate forcing's in Africa and globally as well as an overall estimated cost for such an endeavour of about 550 Meuro over the next 30 years. We further highlight the importance of the development of an e-infrastructure, the necessity for capacity development and the inclusion of all stakeholders to ensure African ownership.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-26
    Description: Außerschulische Lernorte wie Themenpfade, Geoparks, Weltkulturerbestätten, Museen und Schülerlabore an geowissenschaftlichen Forschungseinrichtungen sind von essenzieller Bedeutung für die Kommunikation geowissenschaftlicher Wissensbestände hinein in die Schulen und an die Öffentlichkeit. Das vorliegende Kapitel zeigt die Vielfalt der Angebote. An der Vermittlung interessierten Geowissenschaftlerinnen und Geowissenschaftlern können die Beschreibungen der Vermittlungsansätze als Anregung für eigene Projekte dienen. Lehrkräfte erhalten einen Überblick über außerschulische Lernorte, die sie mit ihren Lerngruppen aufsuchen können, und erfahren, was sie dort erwarten wird.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-14
    Description: Isolation and detection of microplastics (MP) in marine samples is extremely cost- and labor-intensive, limiting the speed and amount of data that can be collected. In the current work, we describe rapid measurement of net-collected MPs (net mesh size 300 µm) using a benchtop near-infrared hyperspectral imaging system during a research expedition to the subtropical North Atlantic gyre. Suspected plastic particles were identified microscopically and mounted on a black adhesive background. Particles were imaged with a Specim FX17 near-infrared linescan camera and a motorized stage. A particle mapping procedure was built on existing edge-finding algorithms and a polymer identification method developed using spectra from virgin polymer reference materials. This preliminary work focused on polyethylene, polypropylene, and polystyrene as they are less dense than seawater and therefore likely to be found floating in the open ocean. A total of 27 net tows sampled 2534 suspected MP particles that were imaged and analyzed at sea. Approximately 77.1% of particles were identified as polyethylene, followed by polypropylene (9.2%). A small fraction of polystyrene was detected only at one station. Approximately 13.6% of particles were either other plastic polymers or were natural materials visually misidentified as plastics. Particle size distributions for PE and PP particles with a length greater than 1 mm followed an approximate power law relationship with abundance. This method allowed at-sea, near real-time identification of MP polymer types and particle dimensions, and shows great promise for rapid field measurements of microplastics in net-collected samples.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...