ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Annual Reviews  (2)
  • Springer  (1)
  • 1995-1999  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 60 (1998), S. 73-103 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Numerous organisms are capable of surviving more or less complete dehydration. A common feature in their biochemistry is that they accumulate large amounts of disaccharides, the most common of which are sucrose and trehalose. Over the past 20 years, we have provided evidence that these sugars stabilize membranes and proteins in the dry state, most likely by hydrogen bonding to polar residues in the dry macromolecular assemblages. This direct interaction results in maintenance of dry proteins and membranes in a physical state similar to that seen in the presence of excess water. An alternative viewpoint has been proposed, based on the fact that both sucrose and trehalose form glasses in the dry state. It has been suggested that glass formation (vitrification) is in itself sufficient to stabilize dry biomaterials. In this review we present evidence that, although vitrification is indeed required, it is not in itself sufficient. Instead, both direct interaction and vitrification are required. Special properties have often been claimed for trehalose in this regard. In fact, trehalose has been shown by many workers to be remarkably (and sometimes uniquely) effective in stabilizing dry or frozen biomolecules, cells, and tissues. Others have not observed any such special properties. We review evidence here showing that trehalose has a remarkably high glass-transition temperature (Tg). It is not anomalous in this regard because it lies at the end of a continuum of sugars with increasing Tg. However, it is unusual in that addition of small amounts of water does not depress Tg, as in other sugars. Instead, a dihydrate crystal of trehalose forms, thereby shielding the remaining glassy trehalose from effects of the added water. Thus under less than ideal conditions such as high humidity and temperature, trehalose does indeed have special properties, which may explain the stability and longevity of anhydrobiotes that contain it. Further, it makes this sugar useful in stabilization of biomolecules of use in human welfare.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5176
    Keywords: Cyanobacteria ; Nostoc commune ; glycan ; phase transition ; membrane ; desiccation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cells of the cyanobacterium Nostoc commune secrete a complex, high molecular weight, extracellular polysaccharide (EPS) which accumulates to more than 60% of the dry weight of colonies. The EPS was purified from the clonal isolate N. commune DRH1. The midpoint of the membrane phase transition (Tm) of desiccated cells of N. commune CHEN was low (Tm dry = 8 °C) and was comparable to the Tm of rehydrated cells((Tm)H20 = 6 °C). The EPS was not responsible for the depression of Tm. However, the EPS, at low concentrations, inhibited specifically the fusion of phosphatidylcholine membrane vesicles when they were dried in vitro at0% relative humidity (−400 MPa). Low concentrations of a trehalose:sucrose mixture, in a molar ratio which corresponded with that present in cells in vivo, together with small amounts of the EPS, were efficient in preventing leakage of carboxyfloroscein (CF) from membrane vesicles. Freeze-fracture electron microscopy resolved complex changes in the structure of the EPS and the outer membrane in response to rehydration of desiccated cells. The capacity of the EPS to prevent membrane fusion, the maintenance of a low Tm dry in desiccated cells, and the changes in rheological properties of the EPS in response to water availability, constitute what are likely important mechanisms for desiccation tolerance in this cyanobacterium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-10-01
    Description: ▪ Abstract  Numerous organisms are capable of surviving more or less complete dehydration. A common feature in their biochemistry is that they accumulate large amounts of disaccharides, the most common of which are sucrose and trehalose. Over the past 20 years, we have provided evidence that these sugars stabilize membranes and proteins in the dry state, most likely by hydrogen bonding to polar residues in the dry macromolecular assemblages. This direct interaction results in maintenance of dry proteins and membranes in a physical state similar to that seen in the presence of excess water. An alternative viewpoint has been proposed, based on the fact that both sucrose and trehalose form glasses in the dry state. It has been suggested that glass formation (vitrification) is in itself sufficient to stabilize dry biomaterials. In this review we present evidence that, although vitrification is indeed required, it is not in itself sufficient. Instead, both direct interaction and vitrification are required. Special properties have often been claimed for trehalose in this regard. In fact, trehalose has been shown by many workers to be remarkably (and sometimes uniquely) effective in stabilizing dry or frozen biomolecules, cells, and tissues. Others have not observed any such special properties. We review evidence here showing that trehalose has a remarkably high glass-transition temperature (Tg). It is not anomalous in this regard because it lies at the end of a continuum of sugars with increasing Tg. However, it is unusual in that addition of small amounts of water does not depress Tg, as in other sugars. Instead, a dihydrate crystal of trehalose forms, thereby shielding the remaining glassy trehalose from effects of the added water. Thus under less than ideal conditions such as high humidity and temperature, trehalose does indeed have special properties, which may explain the stability and longevity of anhydrobiotes that contain it. Further, it makes this sugar useful in stabilization of biomolecules of use in human welfare.
    Print ISSN: 0066-4278
    Electronic ISSN: 1545-1585
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...