ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 39 (1994), S. 209-234 
    ISSN: 1573-5079
    Keywords: carbon biogeochemistry ; climate change ; carbon cycle ; atmospheric CO2 content
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The rapid increase of atmospheric CO2 resulting from anthropogenic activites has stimulated a great deal of interest in the carbon cycle. Important decisions need to be made about future tolerable levels of atmospheric CO2 content, as well as the land and fossil fuel use strategies that will permit us to achieve these goals. The vast amount of new data on atmospheric CO2 content and ancillary properties that has become available during the last decade, and the development of models to interpret these data, have led to significant advances in our capacity to deal with such issues. However, a major continuing source of uncertainty is the role of photosynthesis in providing a sink for anthropogenic emissions. It is thus appropriate that a new evaluation of the status of our understanding of this issue should be made at this time. The aim of this paper is to provide a setting for the papers that follow by giving an overview of the role of carbon dioxide in climate, the biogeochemical processes that control its distribution, and the evolution of carbon dioxide through time from the origin of the earth to the present. We begin with a discussion of relevant processes. We then proceed to a more detailed discussion of the time periods that are best documented: the late Pleistocene (during which time large continental ice sheets waxed and waned) and the modern era of anthropogenic impact on the carbon cycle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 64 (1992), S. 405-421 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A 3-D global ocean model used previously to determine natural oceanic uptake of anthropogenic CO2 is used here to evaluate another proposed strategy for mitigation of rising atmospheric CO2. As a reference, this study bases itself on previous efforts with the same model to evaluate the potential of Fe fertilization as a means to enhance oceanic CO2 uptake. From that base, we test the feasibility of slowing the rise in atmospheric CO2 by enhancing growth of seaweed, a proposal resurrected from previous efforts considering it as a means to grow marine biomass as fuel for energy production. To determine its maximum potential, logistical and financial constraints are ignored. An enhanced growth of 1 GT C yr−1 is prescribed to be evenly distributed over a large ocean area such as the equatorial band from 18°S to 18°N and the northern and southern subtropics from 18° to 49° latitude. Results from these simulations clearly demonstrate that the CO2 invasion from the atmosphere is substantially less than C removed from the surface via enhanced growth. When enhanced growth is supported only by naturally available nutrients, the enhancement to the air to sea CO2 flux averages 0.2 GT C yr−1 for the first 100 yr. When nutrients are supplied artificially to support the enhanced growth, the mean enhanced air to sea flux is more (for the first 100 yr it averages 0.72 GT C yr−1 when all enhanced growth is harvested but only 0.44 GT C yr−1 without harvesting); however, generating enhanced marine growth at 1 GT C yr−1 requires an unreasonably large supply of nutrient—close to the world's current rate of fertilizer production for P and substantially more than that for N. Less nutrient is needed if the enhanced algal growth is not harvested and thus respired, but respiration increases demand for oxygen so that significant anoxia develops. We conclude that growth of macroalgae is an inefficient mechanism for sequestering anthropogenic CO2 and that the use of macroalgae as an additional fuel source will actually result in a net transfer of CO2 from ocean to atmosphere; however, there would be a reduction in the atmospheric CO2 increase rate if macroalgae were used as a partial replacement for fossil fuel.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1992-08-01
    Print ISSN: 0049-6979
    Electronic ISSN: 1573-2932
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-02-13
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...