ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1424
    Keywords: K+ channel ; Chara ; Patch clamp ; Ion permeation ; Surface potential ; Diffusion-limited ion flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The kinetics of single K+ channels were derived for patch-clamp recordings of membrane patches excised from cytoplasmic drops from the plant, Chara australis R. Br. Specifically, the “tilt effect” model of MacKinnon, Latorre and Miller (1989. Biochemistry 28:8092–8099) has been used to measure the electrostatic potential (surface PD) and fixed charge at the entrances of the channel. The surface PD is derived from the difference between the trans-pore potential difference (PD) and that between the two bulk phases. The trans-pore PD is probed using three voltage-dependent properties of the channel. These are (1) the association and dissociation rates of Ca2+ binding to the channel, from both the cytoplasmic and vacuolar solutions. These were determined from the mean blocked and unblocked durations of the channel in the presence of either 20 mmol liter−1 vacuolar or 1 mmol liter−1 cytoplasmic Ca2+; (2) the closing rate of the channel's intrinsic gating process. This was determined from the mean channel open time in the absence of vacuolar Ca2+ at membrane PDs more negative than −100 mV; and (3) the effect of Mg2+ on channel conductance when added to solutions initially containing 3 mmol liter−1 KCl. The voltage dependence of properties 1 and 2 shifts along the voltage axis according to the ionic strength of the bathing media, consistent with the presence of negative charge in the channel vestibules. Furthermore, the magnitude of this shift depends on the current in a manner consistent with diffusion-limited ion flow in the channel (i.e., the rate of ion diffusion in the external electrolyte limits the channel conductance). Mg2+ on either side of the membrane alters channel conductance in a voltage-dependent way. A novel feature of the Mg2+ effect is that it reverses, from a block to an enhancement, when the membrane PD is more negative than −70 mV. This reversal only appears in solutions of low ionic strength. The attenuating effect is due to voltage-dependent binding of Mg2+ within the pore, which presumably plugs the channel. The enhancing effect is due to screening by Mg2+ of surface potentials arising from diffusion-limited flow of K+. All experimental approaches give a consistent picture of K + permeation in which the surface charge and convergence permeability of the cytoplasmic vestibule are the major factors in determining channel conductance. The cytoplasmic vestibule has a charge density of −0.035 C/m 2 which is similar to that found for maxi K channels in rat muscle. The properties of the vacuolar vestibule, which is effectively neutral, differ from the negatively charged external vestibules in rat maxi K channels indicating a differing protein structure in this part of the channel. Finally, we note that our method of testing for diffusion-limited ion flow, by measuring the dependence of the surface PD on the current passing through the channel, is more reliable than common tests, which make use of nonelectrolytes such as sucrose. It appears that these molecules alter channel conductance by interfering with the intrinsic permeation mechanism of the channel rather than by altering bulk viscosity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 98 (1987), S. 191-196 
    ISSN: 1432-1424
    Keywords: amine ; porter ; Chara australis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The rate of transport of amine ions intoChara australis internodes is studied by measuring changes in membrane current when amine solutions are presented to voltage-clamped cells. The dependence of this rate on ion concentration is investigated for a series of alkyl-amine ions: methyl-, ethyl-, isopropyl-, dimethyl-, trimethyl- and tetramethylammonium. A Michaelis-Menten relationship is displayed by all except tri- and tetramethylammonium, where currents are irregular and difficult to reproduce. Evidence suggests that the different ions cross the plasmalemma via a common uniport.K M values for this porter increase as the amine ion becomes more highly substituted. TheV m values are similar for all amines and lie within the range 10 to 100 mA m−2 (for cell potential at −200 mV). The changes inK M indicate that hydrogen bonding may be involved in the binding interaction.V m varies with external pH in a way which suggests that an ionizable group on the transport protein with pKa≈5.8 directly affects the transport rate.K M is independent of external pH over the range 4.5 to 10.5
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 121 (1991), S. 11-22 
    ISSN: 1432-1424
    Keywords: channel ; protoplast ; K+ current ; patch clamp ; corn ; maize
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Whole-cell sealed-on pipettes have been used to measure electrical properties of the plasmalemma surrounding protoplasts isolated from Black Mexican sweet corn shoot cells from suspension culture. In these protoplasts the membrane resting potential (V m ) was found to be −59±23 mV (n=23) in 1mm K o − . The meanV m became more negative as [K−] o decreased, but was more positive than the K+ equilibrium potential. There was no evidence of electrogenic pump activity. We describe four features of the current-voltage characteristic of the plasmalemma of these protoplasts which show voltagegated channel activity. Depolarization of the whole-cell membrane from the resting potential activates time- and voltage-dependent outward current through K+-selective channels. A local minimum in the outward current-voltage curve nearV m =150 mV suggests that these currents are mediated by two populations of K+-selective channels. The absence of this minimum in the presence of verapamil suggests that the activation of one channel population depends on the influx of Ca2+ into the cytoplasm. We identify unitary currents from two K+-selective channel populations (40 and 125 pS) which open when the membrane is depolarized; it is possible that these mediate the outward whole-cell current. Hyperpolarization of the membrane from the resting potential produces time- and voltage-dependent inward whole-cell current. Current activation is fast and follows an exponential time course. The current saturates and in some cases decreases at membrane potentials more negative than −175 mV. This current is conducted by poorly selective K+ channels, whereP Cl/P K=0.43±0.15. We describe a low conductance (20 pS) channel population of unknown selectivity which opens when the membrane is hyperpolarized. It is possible that these channels mediate inward whole-cell current. When the membrane is hyperpolarized to potentials more negative than −250 mV large, irregular inward current is activated. A third type of inward whole-cell current is briefly described. This activates slowly and with a U-shaped current-voltage curve over the range of membrane potentials −90〈V m 〈0 mV.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Annals of software engineering 3 (1997), S. 417-432 
    ISSN: 1573-7489
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract This paper describes the role of a Concept of Operations (ConOps) document in specification and development of a software‐intensive system. It also describes the process of developing a ConOps, its use and benefits, who should develop it, and when it should be developed. The ConOps described in this paper is compared to other forms of operational concept documents. A detailed outline for ConOps documents is provided in an appendix to the paper.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1617-4623
    Keywords: Positional (map-based) cloning ; Pulsed field electrophoresis ; Physical mapping ; RFLP mapping ; Pollen development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Pollen development requires both sporophytic and gametophytic gene expression. We are using a map-based cloning technique to isolate sporophytic genes which, when mutant, cause pollen abortion and a male sterile (ms) phenotype in tomato (Lycopersicon esculentum). We have genetically characterized onems locus (ms14) using RFLP analysis and identified flanking markers. High-resolution genomic physical mapping indicates that thems14 locus is located in a ∼300 kb region. We have identified a YAC clone with an insert size of ∼610 kb that contains thems14-linked markers, reflects the organization of the physical map and therefore most probably contains thems14 gene. In addition, we present evidence that the relationship between physical and genetic distance in this chromosomal region changes abruptly from ∼105–140 kb/cM to less than 24 kb/cM, and suggest that the TG393-TG104 region is a hotspot for recombination.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 108 (1989), S. 153-164 
    ISSN: 1432-1424
    Keywords: K+ channel ; permeation kinetics ; patch clamp ; Chara australis ; cytoplasmic drop ; diffusion limited
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary We report a study of a potassium-selective channel in the membrane delineating cytoplasmic drops fromChara australis. The relatively large conductance (170 pS in 150 mol/m3 (mm) KCl), high ion selectivity (P Cl/P K=0.015±0.01) and voltagedependent kinetics of this channel indicate that it is a type of maxi-K channel commonly found in animal cells but not previously detected in any plant cell. The current-voltage (I/V) characteristic of these channels was examined in drop-attached and in excised outside-out patches using the patch-clamp technique, over the unusually large voltage range of −250 to 200 mV. TheI/V characteristic is nonlinear and shows saturation at extreme voltages; the current also saturates at high [K+]. In solutions with symmetrical KCl concentrations the saturation behavior of the current is asymmetrical. The permeability of the channel depends on whether it is observed in excised or in drop-attached membrane patches. Here we investigate the main factors affecting the permeation of K+ ions through this maxi-K channel. We present the first direct evidence for the importance of diffusion external to the pore in limiting ion flow through maxi-K channels. The data are consistent with an ion translocation mechanism whose current is limited (i) at high voltages by ion diffusion external to the pore and (ii) at high [K+] by the maximum transport rate of the channel. We fit the data to a diffusion-limited pore model in which the pore exhibits saturation described by Michaelis-Menten kinetics with aK m=50±25 mol/m3 andG max=300±20 pS.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 128 (1992), S. 103-113 
    ISSN: 1432-1424
    Keywords: K+ channel ; Ca2+ channel ; selectivity ; permeation ; plant ; Vicia faba
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The whole-cell patch-clamp method has been used to measure Ca2+ influx through otherwise K+-selective channels in the plasma membrane surrounding protoplasts from guard cells of Vicia faba. These channels are activated by membrane hyperpolarization. The resulting K+ influx contributes to the increase in guard cell turgor which causes stomatal opening during the regulation of leaf-air gas exchange. We find that after opening the K+ channels by hyperpolarization, depolarization of the membrane results in tail current at voltages where there is no electrochemical force to drive K+ inward through the channels. Tail current remains when the reversal potential for permeant ions other than Ca2+ is more negative than or equal to the K+ equilibrium potential (−47 mV), indicating that the current is due to Ca2+ influx through the K+ channels prior to their closure. Decreasing internal [Ca2+] (Ca i ) from 200 to 2 nm or increasing the external [Ca2+] (Ca o ) from 1 to 10 mm increases the amplitude of tail current and shifts the observed reversal potential to more positive values. Such increases in the electrochemical force driving Ca2+ influx also decrease the amplitude of time-activated current, indicating that Ca2+ permeation is slower than K+ permeation, and so causes a partial block. Increasing Ca o also (i) causes a positive shift in the voltage dependence of current, presumably by decreasing the membrane surface potential, and (ii) results in a U-shaped current-voltage relationship with peak inward current ca. −160 mV, indicating that the Ca2− block is voltage dependent and suggesting that the cation binding site is within the electric field of the membrane. K+ channels in Zea mays guard cells also appear to have a Ca i -, and Ca o -dependent ability to mediate Ca2+ influx. We suggest that the inwardly rectiying K+ channels are part of a regulatory mechanism for Ca i . Changes in Ca o and (associated) changes in Ca i regulate a variety of intracellular processes and ion fluxes, including the K+ and anion fluxes associated with stomatal aperture change.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Planta 186 (1992), S. 282-293 
    ISSN: 1432-2048
    Keywords: Guard cell ; Patch clamp ; Plasma membrane ; Potassium channels ; Zea (K+ currents)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Knowledge of ion fluxes in the dumbell-shaped guard cells of grass species has been limited by the difficulty of obtaining isolated epidermes or guard-cell protoplasts for use in radioactive-tracer or electrophysiological studies. We describe here a method for isolating guard-cell protoplasts from Zea mays L. Whole-cell patch clamp has been used to measure K+-channel current across the plasma membrane surrounding these protoplasts. Two populations of K+-permeable channels have been identified. Hyperpolarization of the membrane to potentials (Vm) more negative than -100 mV results in inward K+ current through one population of channels. Inward current activation is faster than in the dicotyledon, Vicia faba L. (mean activation half-time 26 ms (Z. mays) versus 123 ms (V. faba) at Vm=-180 mV). Steady-state current density is less than in V. faba (-22 μA · cm−2 (Z. mays) versus -40 μA · cm−2 (V. faba) at Vm=- 180 mV in 12 mM external K+). Depolarization of the membrane to potentials more positive than -20 mV results in outward K+ current through a second population of channels; these channels activate and (upon repolarization of the membrane) deactivate more slowly than in V. faba (mean activation half-time 375 ms (Z. mays) versus 187 ms (V. faba) at Vm=+ 80 mV) but result in a similar steady-state current density (23.8 μA · cm−2 (Z. mays) versus 28.7 μA · cm−2 (V. faba) at Vm= + 80 mV with 105 mM internal K+). Omission of K+ eliminates the current. The K+ current is sensitive to both internal and external Ca2+ concentration: increasing internal Ca2+ from 2 nM to 0.2 μM or increasing external Ca2+ from 1 mM to 8.5 mM reduces the magnitude of both inward and outward current.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2048
    Keywords: Guard cell ; Patch clamp ; Potassium channel (kinetics) ; Stomate ; Vicia ; Zea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We describe and compare inward and outward whole-cell K+ currents across the plasma membrane surrounding guard-cell protoplasts from the dicotyledon, Vicia faba, and the graminaceous monocotyledon, Zea mays. Macrosopic whole-cell current is considered in terms of microscopic single-channel activity, which involves discrete steps between conducting (open) and nonconducting (closed) states of the channel protein. Kinetic equations are used to model the number of open and closed states for channels conducting K+ influx (K(in)) and K+ efflux (K(out)) in the two species, and to calculate the rate at which open-closed transitions occur. The opening and closure of K(in) channels in both Vicia and Zea follow single-exponential timecourses, indicating that K(in)-channel proteins in each species simply fluctuate between one open and one closed state. In both species, opening of K(in) channels is voltage-independent, but closure of K(in) channels is faster at more positive membrane potentials. In response to identical voltage stimuli, K(in) channels in Zea open and close approximately three times as fast as in Vicia. In contrast to K(in), K(out) channels in Zea open and close more slowly than in Vicia. The closure of K(out) channels follows a single-exponential timecourse in each species, indicating one open state. The kinetics of K(out)-channel opening are more complicated and indicate the presence of at least two (Vicia) or three (Zea) closed states.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    International journal of computer vision 29 (1998), S. 47-58 
    ISSN: 1573-1405
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract This paper describes an algorithm for maintaining fixation upon a 3D body-centred point using 3D affine transfer, extending an earlier monocular method to stereo cameras. Transfer is based on corners detected in the image and matched over time and in stereo. The paper presents a method using all available matched data, providing immunity to noise and poor conditioning. The algorithm, implemented at video rates on a multi-processor machine, incorporates controlled degradation in the presence of insufficient data. Results are given from experiments using a four-axis active stereo camera platform, first which show the greater stability of the fixation point over the monocular method, both as it appears in the image and occurs in the scene; and, secondly, which show the recovery and evolution of 3D affine structure during fixation. It is shown that fixation and explicit structure recovery can occur separately, allowing the information required for gaze control to be computed in a fixed time.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...