ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    Louis University
    In:  report for Department of Civil Engineering, University of Kentucky, Lexington, Hamburg, Louis University, vol. C 560, 183 pp., no. GL-TR-89-0143, pp. 68-71, (ISBN 3-933346-037)
    Publikationsdatum: 1988
    Schlagwort(e): Seismology ; Strong motions
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-04-04
    Beschreibung: In order to empirically obtain the scaling relationships for the high-frequency ground motion in the Western Alps (NW Italy), regressions are carried out on more than 7500 seismograms from 957 regional earthquakes. The waveforms were selected from the database of 6 three-component stations of the RSNI (Regional Seismic network of Northwestern Italy). The events,MW ranging between 1.2 and 4.8, were recorded within a hypocentral distance of 200 km during the time period: 1996–2001. The peak ground velocities are measured in selected narrow-frequency bands, between 0.5 and 14 Hz. Results are presented in terms of a regional attenuation function for the vertical ground motion, a set of vertical excitation terms at the reference station STV2 (hard-rock), and a set of site terms (vertical and horizontal), all relative to the vertical component of station STV2. The regional propagation of the ground motion is modeled after quantifying the expected duration of the seismic motion as a function of frequency and hypocentral distance. A simple functional form is used to take into account both the geometrical and the anelastic attenuation: a multi-variable grid search yielded a quality factor Q( f ) = 310 f 0.20, together with a quadri-linear geometrical spreading at low frequency. A simpler, bilinear geometrical spreading seems to be more appropriate at higher frequencies (f 〉 1.0 Hz). Excitation terms are matched by using a Brune spectral model with variable, magnitude-dependent stress drop: at Mw 4.8, we used σ = 50MPa. A regional distanceindependent attenuation parameter is obtained (κ0 = 0.012 s) by modelling the average spectral decay at high frequency of small earthquakes. In order to predict the absolute levels of ground shaking in the region, the excitation/attenuation model is used through the Random Vibration Theory (RVT) with a stochastic point-source model. The expected peak-ground accelerations (PGA) are compared with the ones derived by Ambraseys et al. (1996) for the Mediterranean region and by Sabetta and Pugliese (1996) for the Italian territory.
    Beschreibung: Published
    Beschreibung: 315-333
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Attenuation ; Ground motion ; Western Alps ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2020-02-25
    Beschreibung: We present rupture details of the Mw 6.3 April 6, 2009 L’Aquila earthquake derived by back‐projecting teleseismic P waves. This technique has previously been applied to large magnitude earthquakes, but this is the first application to a moderate size event. We processed vertical‐component seismograms for 60 broadband stations obtained from the Incorporated Research Institutions for Seismology (IRIS) data center. The traces were aligned and normalized using a multi‐channel cross‐correlation algorithm and 4th root stacking was used to image the rupture. We found that the L’Aquila earthquake ruptured towards the south and that a second discrete pulse of energy occurred 20–25 km east of the epicenter about 17–18 s after the nominal origin time. The spatial extent of the rupture image correlates well with a post‐seismic survey of damage in the region. Because the technique is potentially very fast (images can be produced within 20–30 minutes of the origin time), it may be useful to governmental agencies tasked with emergency response and rescue.
    Beschreibung: Published
    Beschreibung: L03301
    Beschreibung: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): L'AQUILA EARTHQUAKE ; BACK_PROJECTION ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2006-10-10
    Beschreibung: In order to empirically obtain the scaling relationships for the high-frequency ground motion in the Western Alps (NW Italy), regressions are carried out on more than 7500 seismograms from 957 regional earthquakes. The waveforms were selected from the database of 6 three-component stations of the RSNI (Regional Seismic network of Northwestern Italy). The events, MW ranging between 1.2 and 4.8, were recorded within a hypocentral distance of 200 km during the time period: 1996-2001. The peak ground velocities are measured in selected narrow-frequency bands, between 0.5 and 14 Hz. Results are presented in terms of a regional attenuation function for the vertical ground motion, a set of vertical excitation terms at the reference station STV2 (hard-rock), and a set of site terms (vertical and horizontal), all relative to the vertical component of station STV2. The regional propagation of the ground motion is modeled after quantifying the expected duration of the seismic motion as a function of frequency and hypocentral distance. A simple functional form is used to take into account both the geometrical and the anelastic attenuation: a multi-variable grid search yielded a quality factor Q(f) = 310 f0.20, together with a quadri-linear geometrical spreading at low frequency. A simpler, bi-linear geometrical spreading seems to be more appropriate at higher frequencies (f 〉 1.0 Hz). Excitation terms are matched by using a Brune spectral model with variable, magnitude-dependent stress drop: at Mw 4.8, we used Δσ = 50 MPa. A regional distance-independent attenuation parameter is obtained (K0 = 0.012 s) by modelling the average spectral decay at high frequency of small earthquakes. In order to predict the absolute levels of ground shaking in the region, the excitation/attenuation model is used through the Random Vibration Theory (RVT) with a stochastic point-source model. The expected peak-ground accelerations (PGA) are compared with the ones derived by Ambraseys et al. (1996) for the Mediterranean region and by Sabetta and Pugliese (1996) for the Italian territory. © Springer Science+Business Media, Inc. 2006.
    Print ISSN: 1383-4649
    Digitale ISSN: 1573-157X
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...