ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (2)
  • 1980-1984  (2)
Collection
Publisher
Years
Year
  • 1
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The high spatial-temporal resolution of instrumentation on the polar-orbiting S3-2 satellite has allowed a wide variety of measurements of the electrodynamic characteristics of both large- and small-scale structures at high latitudes. Analyses of large scale features observed by S3-2 have shown that: (i) The IMF B ydependence of polar cap convection, first observed in June 1969 by OGO-6 persists in other seasons. During periods of northward IMF B zextensive regions of sunward convection may be found in the sunlit polar cap. (ii) In the dawn and dusk MLT sectors 〉90% of the region 1 currents lie equatorward of the convection reversal line. Potentials across the ionospheric projection of the low-latitude boundary layer are typically a few kV. (iii) The location of ‘extra’ field-aligned currents, near the dayside cusp and poleward of the region 1 current sheet is dependent on the IMF B ycomponent. (iv) Simultaneous observations by TRIAD and S3-2 show that sheets of field-aligned current extend uniformly for several hours in MLT, but may have an altitude dependence in the 1000–8000 km range. (v) During magnetic storms ionospheric irregularities occur in regions of poleward density gradients and downward field-aligned currents near the equatorward boundary of diffuse auroral precipitation. In the winter polar cap, density irregularities were also found in regions of highly structured electric fields and soft electron precipitation. (vi) During an intense magnetic storm the auroral zone height-integrated Pederson conductivity was calculated to be in the range 10–30 mho and downcoming energetic electron fluxes accounted for between 50% and 70% of the upward Birkeland currents. Analysis of small-scale structures (latitudinal width 〈 1°), observed by S3-2, have shown that: (i) Intense meridional electric fields (50–250 mV m-1) generated by charge separation near the inner edge of the plasma sheet drive intense subauroral convection and are associated with field-aligned currents, on the order of 1–2 μA m-2. (ii) Case studies of discrete arcs in the auroral oval have shown that arcs are associated with pairs of small-scale, field-aligned currents embedded in the large-scale region 1/region 2 field-aligned current sheets. The maximum observed field-aligned current was an upward current of 135 μA m-2, confined to a latitudinal width of ∼ 2km and carried by field-aligned accelerated electrons. Return (downward) currents associated with arcs are limited to intensities of 10–15 μA m-2. At this limit the ionospheric plasma becomes marginally stable to the onset of ion-cyclotron turbulence. Two instances of plasma vortices, characteristic of auroral curls, have been observed in the region between the paired current sheets. (iii) Sun-aligned arcs in the polar cap are found in a region of negative electric field divergence, embedded in an irregular electric field pattern. The electrons producing the arcs have a temperature of ∼ 200 eV and have been accelerated through potential drops of ∼ 1 kV along the magnetic field. Return currents may appear on both sides of polar-cap arcs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1981-01-01
    Print ISSN: 0011-4642
    Electronic ISSN: 1572-9141
    Topics: Mathematics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...