ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-05-01
    Description: Indirect methods for predicting the soil moisture characteristic curve (SMC) from the particle size distribution (PSD) often rely on empirical coefficients, which limits their applicability to independent data sets. We have developed a robust simple PSD-based conceptual SMC prediction model and evaluated the model performance through comparisons with the Haverkamp and Parlange (HP) and Arya and Paris (AP) models. Following the AP model, we divided the PSD into n size fractions where each fraction contained spherical particles whose packing state is described by a parameter. The moisture content is subsequently calculated from the PSD and measured saturated moisture content. The packing state is estimated from particle and bulk densities. The suction head is predicted based on the particle size, assuming a linear relationship between the suction head and packing state. Our results showed that the model can adequately predict the SMC as measured in 80 soils selected from the UNSODA database. It was also shown that the proposed model provides better predictions of SMC than the AP or HP models. The model underestimates the moisture content in the dry range of the SMC. We attribute this bias to the incomplete desorption of residual water coated on soil particles or water retained within nonspherical particles with high surface energy contents. We conclude that the main advantage of our model is the robustness and independency of model performance on soil type, allowing improving predictions of SMC from PSD at larger watershed scales.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-02-01
    Description: We investigate the flow rate dependency of solute transport within an undisturbed monolithic soil core, collected in an Inceptisol. Through a series of nine controlled steady-state solute breakthrough experiments, flow rate dependency of solute transport was elucidated using the general transfer function (GTF) modeling theory. We first observed that the apparent dispersion coefficient increases with depth and flow rate. We also observed that the flow regime is rather a convective-dispersive (CD) process at low flow rates and a stochastic-convective (SC) process at high flow rates. At intermediate flow rates, the flow regime could not be described with either CD or SC processes. To better understand the mechanisms of altering flow regime at intermediate flow rates, a dye tracer experiment was conducted. Results show that preferential flow is initiated at intermediate flow rates. We hypothesize that the mixing of solutes between stream tubes decreases when flow rate increases, due to the decrease of the tortuosity of solute flow paths and the initiation of preferential flow through macropores.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...