ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-01-01
    Description: We combined a full-waveform ground-penetrating radar (GPR) model with a roughness model to retrieve surface soil moisture through signal inversion. The proposed approach was validated under laboratory conditions with measurements performed above a sand layer subjected to seven different water contents and four different surface roughness conditions. The radar measurements were performed in the frequency domain in the range of 1–3 GHz and the roughness amplitude standard deviation was varied from 0 to 1 cm. Two inversion strategies were investigated: (1) Full-waveform inversion using the correct model configuration, and (2) inversion focused on the surface reflection only. The roughness model provided a good description of the frequency-dependent roughness effect. For the full-waveform analysis, accounting for roughness permitted us to simultaneously retrieve water content and roughness amplitude. However, in this approach, information on soil layering was assumed to be known. For the surface reflection analysis, which is applicable under field conditions, accounting for roughness only enabled water content to be reconstructed, but with a root mean square error (RMS) in terms of water content of 0.034??m3?m-3 compared to an RMS of 0.068??m3?m-3 for an analysis where roughness is neglected. However, this inversion strategy required a priori information on soil surface roughness, estimated, e.g., from laser profiler measurements.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-01
    Description: High-contrast layers caused by porosity or clay content changes can have a dominant effect on hydraulic processes within an aquifer. These layers can act as low-velocity waveguides for GPR waves. We used a field example from a hydrological test site in Switzerland to show that full-waveform inversion of crosshole GPR signals could image a subwavelength thickness low-velocity waveguiding layer. We exploited the full information content of the data, whereas ray-based inversion techniques are not able to image such thin waveguide layers because they only exploit the first-arrival times and first-cycle amplitudes. This low-velocity waveguide layer is caused by an increase in porosity and indicates a preferential flow path within the aquifer. The waveguide trapping causes anomalously high amplitudes and elongated wavetrains to be observed for a transmitter within the waveguide and receivers straddling the waveguide depth range. The excellent fit of amplitudes and phase between the measured and modeled data confirms its presence. This new method enables detailed aquifer characterization to accurately predict transport and flow and can be applied to a wide range of geologic, hydrological, and engineering investigations.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...