ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-11
    Description: The 3.28 to 3.23 Ga Mapepe Formation in the Barberton greenstone belt, South Africa, marks the initiation of widespread tectonic uplift and deformation after nearly 300 million years of predominantly basaltic and komatiitic magmatism under largely anorogenic conditions. This rapid transition is recorded in the eastern Barite Valley area by the buildup of a fan delta. Well-exposed sections there reach about 450 m thick and can be divided (from base to top) into five informal members: Member 1 is dominated by mudstone with subordinate banded ferruginous chert and turbiditic sandstone representing a deep-water basinal environment. Member 2 is composed of siltstone and fine-grained sandstone reworked by currents to form laminated, cross-laminated, and low-angle cross-stratified sediments in an off-shore or possibly subtidal fan-delta-front setting. Member 3 overlies member 2 unconformably; it is composed of predominantly coarse-grained, cross-bedded sandstone interbedded with laminated mudstone deposited on shallow-subtidal to intertidal flats along the fringe of a small fan delta in which putative microbial mats covered low-energy upper tidal flats. Fan-delta sedimentation was subsequently overwhelmed by the influx of dacitic pyroclastic sediments of member 4. Orthochemical sedimentary rocks including barite, jaspilite, and chert deposited on top of this shallow-water bank. Mappable facies changes towards the northeast and southwest document the transition from bank top into major mass-transport deposits of fan-delta slope facies and then into basinal deposits. Subsequent relative sea-level rise resulted in the return to below-wave-base deposition of turbiditic sandstone, mudstone, and banded ferruginous chert of member 5. The lenticular geometry of units in cross section, mineralogical immaturity, and high variability in provenance of the coarse-grained units imply short-distance transport of sediment derived from strata of the underlying Onverwacht Group and from local penecontemporaneous dacitic volcanism. Throughout the greenstone belt, Mapepe rocks in several structural belts display fan deltas developed adjacent to small, local uplifts. While the cause of these uplifts has generally been associated with the initiation of geodynamically driven tectonic activity in the BGB, it is possible that a cluster of large meteorite impacts may have directly or indirectly triggered the crustal deformation.
    Print ISSN: 1527-1404
    Electronic ISSN: 1938-3681
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-22
    Description: Ediacaran-age (635–542 Ma) oil-bearing strata in the Yarakta Horizon at the Verkhnechonskoye and Yaraktinskoye fields, East Siberia, consist of conglomerate, sandstone, dolomitic sandstone, and mudstone overlying and onlapping igneous to metasedimentary highlands of the East Siberia craton. Initial drainage networks formed within structurally defined valleys, and early deposition occurred in localized alluvial to shallow-marine depositional systems. Base-level-controlled depositional cycles aggraded the valleys; thus, as valleys aggraded, they buried interfluves and coalesced forming broad alluvial and coastal plains. Three to seven bedsets of variable net-to-gross content constitute a genetic cycle. Depositional cycles varied locally, as nine and eight cycles separated by decimeter- to multi-meter-thick mudstones are defined at Verknechonskoye and Yaraktinskoye, respectively. Within one genetic cycle, facies associations grade basinward from alluvial (channel-bar, channel-fill, floodplain, playa, and crevasse-splay) to shallow marine (sabkha, tidal-flat, estuarine-channel, and poorly developed shoreface). Coarse-grained lithofacies are typically arranged in decimeter- to meter-scale bedsets with sharp to scoured bases. Bedsets commonly, but not always, show an upward decrease in grain size, bed thickness, and scale of sedimentary structure. Typically, medium-grained sandstones exhibit low-angle cross bedding and are gradationally overlain by fine-grained sandstones exhibiting scour-and-fill, cuspate-ripple lamination, climbing-ripple lamination, and parallel lamination. Clay clasts and small pebbles are accessories. Interbedded mudstones, siltstones, and sandstones show ripple cross bedding, wavy to lenticular bedding, abundant soft-sediment deformation (e.g., shear, fluid-escape, slump features), and slickensides. Thin-bedded sandstones are micaceous and contain granule-size mud chips. Some mudstones exhibit crinkled to parallel laminae indicative of algal growth. Sandstone fills mudcracks. Interbedded green and black mudstones, plus pyrite and siderite cements, indicate alternating redox conditions. Alluvial facies have patchy quartz, anhydrite, and carbonate cements. Marine-influenced facies show early and well-developed quartz cement as well as abundant halite. Gypsum and halite dissolution formed secondary pores. Calculated estimates of fluvial-channel dimensions and sinuosities indicate that despite the lack of vegetation, fluvial channels in the Yarakta Horizon were shallow and relatively narrow, moderately sinuous, and exhibited varying degrees of mud-prone overbank deposition. Recognition and correlation of flooding surfaces and channel diastems bounding genetically related strata identified multiple stratigraphic compartments in each field. Porosity loss at chronostratigraphic boundaries accounts for complex water, oil, and gas contacts. Economic field development is hampered by locally varying reservoir quality and sandstone continuity caused by its channelized and onlapping stratigraphy and diagenesis. Reservoir simulation of varying geostatistical models demonstrate that differing porosity-distribution methods had little effect on estimates of in-place hydrocarbon volumes. Model differences in porosity and permeability distribution and lithofacies connectivity show large variations in recovery factor and productivity/injectivity.
    Print ISSN: 1527-1404
    Electronic ISSN: 1938-3681
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...