ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Societe Geologique de France (SGF)  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2011-09-01
    Description: The geology of the Channel Western Approaches is a key to understand the post-rift evolution of the NW European continental margin in relation with the Europe/Africa collision. Despite considerable evidence of Tertiary tectonic inversion throughout the Channel basin, the structures and amplitudes of the tectonic movements remain poorly documented across the French sector of the Western Approaches. The effect of the tectonic inversion for the evolution of the "Channel River", the major system that flowed into the English Channel during the Plio-Quaternary eustatic lowstands, also needs to be clarified. Its drainage basin was larger than the present-day English Channel and constituted the source of terrigenous fluxes of the Armorican and Celtic deep sea fans. A lack of high-resolution seismic data motivated the implementation of the GEOMOC and GEOBREST cruises, whose main results are presented in this paper. The new observations highlight the diachronism and the contrast in amplitudes of the deformations involved in the inversion of the French Western Approaches. The tectonic inversion can be described in two stages: a paroxysmal Paleogene stage including two episodes, Eocene (probably Ypresian) and Oligocene, and a more moderate Neogene stage subdivided into Miocene and Pliocene episodes, driven by the reactivation of the same faults. The deformations along the North Iroise fault (NIF) located at the termination of the Medio-Manche fault produced forced folds in the sedimentary cover above the deeper faults. The tectonic inversion generated uplift of about 700 m of the mid-continental shelf south of the NIF. The isochron map of the reflectors bounding the identified seismic sequences clearly demonstrates a major structural control on the geometry of the Neogene deposits. First, the uplift of the eastern part of the Iroise basin during the upper Miocene favoured the onset of a broad submarine delta system that developed towards the subsiding NW outer shelf. The later evolution of the 'palaeovalley' network corresponding to the western termination of the "Channel River" exhibits a 'bayonet' pattern marked by a zigzagging pattern of valleys, with alternating segments orientated N040oE and N070oE, controlled by Neogene faulting. The palaeovalley network could have begun during Reurevian or Pre-Tiglian sea-level lowstands, which exposed the entire shelf below the shelf edge. The amplitude of the sea-level fall is assumed to have been magnified by uplift of the Iroise basin, followed by later tilting of the outer shelf, as observed in many other examples documented along the North Atlantic margins.
    Print ISSN: 0037-9409
    Electronic ISSN: 0037-9409
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-01
    Description: The Messinian salinity crisis (MSC) [Hsu et al., 1973] has deeply shaped the Mediterranean landscape and triggered large sedimentary deposits (evaporites and clastics) in the deep basins within a short time span. Until recently, the MSC has mainly been analyzed independently, either through outcrops located onshore (e.g. Morocco, Cyprus, Spain, Sardinia, Italy) or through marine seismic profiles in the deep offshore. Each approach bears its own limitations: (1) on the one hand, land outcrops refer to incomplete Messinian successions that are geometrically disconnected from the offshore Messinian deposits owing to tectonics (e.g. Apennines) and/or because they accumulated at an early stage of the crisis in shallow marginal basins (e.g. Spain); (2) on the other hand, seismic profiles from the upper margins down to the deep basins allow to image and explore the entire MSC event as a continuous process, but with a lower resolution and with a lack of stratigraphical and lithological control, in the absence of full recovery of scientific boreholes. We present here a synthesis of a set of modern geophysical data over the Mediterranean and Black seas allowing to image the Messinian markers (erosion surfaces, depositional units and their bounding surfaces) much better than previously and to study the spatio-temporal organisation of these markers from the inner-shelves down to the bathyal plains. The results from thirteen areas located offshore are compared, with common charts and nomenclatures. The comparative and multi-site approach developed here allows to analyse the record of the MSC on margin segments and basins that depict various structural, geodynamical and geological settings, to fix a number of local influencing factors (tectonics, subsidence, inherited topography, sedimentary fluxes...) and to partly assess their influence in facies and geometrical variations of the MSC units. We are thus able to extract from our analysis some recurrent signals related to the MSC ss., allowing us to discuss: (1) the amplitude and modalities of base-level changes during the MSC; (2) the depositional modalities of the MSC units in the deep basins; (3) the location of the erosion product of the margins and to emphasise (4) the major differences between the eastern and western Mediterranean basins.
    Print ISSN: 0037-9409
    Electronic ISSN: 0037-9409
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...