ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismological Society of America (SSA)  (5)
  • 1
    Publication Date: 2015-12-02
    Description: Horizontal-to-vertical spectral ratios of microtremors (MHVRs) have been interpreted as representing either the Rayleigh-wave ellipticity or the amplitude ratio of the sum of Rayleigh and Love waves in a horizontally layered structure. However, based on the recently established diffuse field concept, the theoretical form of MHVR has been proposed to be the square root of the ratio between the imaginary part of the horizontal Green’s function on the surface and that of the vertical one. The theory assumes that the energy of a wavefield inside the earth will be equipartitioned among the various states in 3D space. In the case of microtremors, this may occur for randomly applied point-force loadings on the surface after sufficient lapse time to allow multiple scattering. Recent works on diffuse fields suggest that equipartition may arise in several ways, but understanding the emergence of equipartition in realistic settings requires further scrutiny. In the meantime, the resulting formula is quite simple, and its meaning has theoretical support from deterministic exact solutions. As references, we use observed microtremor data from several sites that were reported previously and validate the diffuse field method (DFM) as an alternative method to explain observed MHVR. We use only sites with reliable velocity structures to compare different methods quantitatively. As a result, we found that the DFM solutions with the corresponding 1D layered structures well explain the observed MHVRs for most of the sites. Thus, we believe that MHVR can be used to invert a 1D velocity structure by using DFM as a theoretical tool.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-04
    Description: It has been recently demonstrated that averaging the autocorrelations of fields produced by various almost-vertical incoming elastic body plane waves upon a layered system approximately leads to the imaginary part of the corresponding 1D Green’s functions for deep sources located underneath the receiver ( Kawase et al. , 2011 ). Thus, the ensemble of these waves from deep earthquakes recorded in a station located in the epicentral zone is interpreted as a diffuse field. In this short note, we extend the study to consider earthquakes recorded in a station located at epicentral distances of up to hundreds of kilometers. We consider the horizontal-to-vertical spectral ratio (HVSR) of the averaged P , S , and coda waves and full earthquake records at the Cibeles station (Mexico City Accelerometric Network) and compare these with the results obtained with the corresponding HVSR for the 1D ( Kawase et al. , 2011 ) and the 3D ( Sánchez-Sesma, Rodríguez, et al. , 2011 ) diffuse fields models. Using the signals of 90 earthquakes recorded at Cibeles, we find that the experimental results have distinctive features compatible with the 3D signature of a diffuse field. We interpret this result as a consequence of the multiple paths that seismic waves undergo from the subducting slab to the Mexico City valley and to the multiple scattering in a complex tectonic environment. Our study strongly suggests that we can use strong-motion records from earthquakes and apply similar techniques to the ones used to analyze the ambient seismic field. Online Material: Earthquake catalog.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-10-04
    Description: We propose an optimal way to use horizontal-to-vertical spectral ratios (HVRs) for subsurface structure exploration, based on the diffuse field concept ( Kawase et al. , 2011 ; Sanchez-Sesma et al. , 2011 ). This approach is applicable to both earthquake and microtremor ground motions. We show here analyses of the observed ground-motion data at and around a K-NET station in Miyagi Prefecture, Japan, where very large peak horizontal ground acceleration was observed during the earthquake of 11 March 2011 off the Pacific coast of Tohoku, Japan. We compare HVRs of the strong motions for the mainshock and the largest peak acceleration aftershock with those averaged over tens of weak motions to observe soil nonlinearity effects on the HVRs. Then, we determine detailed velocity profiles from the HVRs at the K-NET Tsukidate station and the temporary aftershock observation sites. We find that HVRs can be explained quite well by the identified velocity profiles at all the target sites. The observed peak at 9 Hz for the averaged weak-motion data originates in the topmost layers lying over the engineering bedrock.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-02-04
    Description: Horizontal-to-vertical (H/V) spectral ratios of microtremors (HVRM) have been traditionally interpreted as representing either the S -wave amplification directly or the Rayleigh-wave ellipticity for a horizontally layered structure. However, based on the diffuse field theory, we have derived an alternative theoretical basis that HVRM corresponds to the square root of the ratio between the imaginary part of the horizontal Green’s function and that of the vertical one. Under that condition, the 1D horizontal layering assumption is not needed to interpret HVRM. As observational evidence of such non-1D HVRM, we discovered significant directional dependency at a site on the Uji campus, Kyoto University, Japan. The observed microtremor north–south/vertical spectral ratios are quite stable and have only one peak around 0.5 Hz. On the other hand, the east–west/vertical spectral ratios are smaller in amplitude and have higher peak frequencies and sometimes two separated peaks. The directional dependency of observed HVRM is aligned to the axis of the 2D basin structure. We performed numerical analyses by spectral element method using a unit load on the surface to examine the effect of the 2D basin structure on the imaginary parts of the Green’s functions. We found that the 2D basin structure clearly changes the characteristics of the H/V spectral ratios in both perpendicular and parallel directions relative to the basin axis. Thus, we succeeded in theoretically simulating the qualitative difference between the H/V spectral ratios for two orthogonal horizontal components of the HVRM observed on the Uji campus. Online Material: Snapshots and animations of wave propagation.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-12-02
    Description: Among other methods, passive imaging technique is widely applied to obtain surface-wave velocities. This technique implies that the average cross correlations between diffuse wavefields recorded at two observers is proportional to the imaginary part of the Green’s function. For this purpose, most applications rely on both seismic ambient noise and the coda of earthquakes. Instead, we use a generalized diffuse field (GDF), defined as the waves produced by a multiplicity of distant seismic sources. These wavefields undergo multiple scatterings along their way and at the local surface geology. In this communication, we use GDF to extract the locally generated surface waves in a 2D alluvial valley model for both inplane and antiplane cases from the retrieved Green’s function. For the inplane case, an equipartitioned cocktail of plane P , SV , and Rayleigh waves is used, whereas for the antiplane case, the incidence is a set of plane SH waves. In addition to isotropic illumination, we explore the partial illumination from one side of the valley. In both cases, we obtain dispersion curves for the Rayleigh and Love waves’ group velocities from the retrieved Green’s functions and found good agreement with the exact result for the fundamental modes of both Love and Rayleigh waves in an infinite horizontal layer. This theoretical validation is a proof of concept within an ongoing project whose goal is to improve the characterization of Mexico City subsoil throughout tomography maps of surface-wave velocities using a collection of historical strong earthquakes recorded by the Mexico City Accelerometric Network.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...