ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of London  (29)
  • American Meteorological Society  (18)
  • Seismological Society of America (SSA)
  • Copernicus
  • 2015-2019  (49)
  • 2000-2004  (12)
  • 1975-1979  (4)
  • 1
    Publication Date: 2016-07-26
    Description: Although the time-averaged shear-wave velocity down to 30 m depth ( V S 30 ) can be a proxy for estimating earthquake ground-motion amplification, significant controversy exists about its limitations when used as a single parameter for the prediction of amplification. To examine this question in absence of relevant strong-motion records, we use a range of different methods to measure the shear-wave velocity profiles and the resulting theoretical site amplification factors (AFs) for 30 sites in the Newcastle area, Australia, in a series of blind comparison studies. The multimethod approach used here combines past seismic cone penetrometer and spectral analysis of surface-wave data, with newly acquired horizontal-to-vertical spectral ratio, passive-source surface-wave spatial autocorrelation (SPAC), refraction microtremor (ReMi), and multichannel analysis of surface-wave data. The various measurement techniques predicted a range of different AFs. The SPAC and ReMi techniques have the smallest overall deviation from the median AF for the majority of sites. We show that V S 30 can be related to spectral response above a period T of 0.5 s but not necessarily with the maximum amplification according to the modeling done based on the measured shear-wave velocity profiles. Both V S 30 and AF values are influenced by the velocity ratio between bedrock and overlying sediments and the presence of surficial thin low-velocity layers (〈2 m thick and 〈150 m/s), but the velocity ratio is what mostly affects the AF. At 0.2〈 T 〈0.4 s, the AFs are largely controlled by the surficial geology of a particular site. AF maxima are the highest in the hard classes, which is the inverse of the findings used in the Australian Building Code. Only for T 〉0.5 s do the amplification curves consistently show higher values for soft site classes and lower for hard classes.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-26
    Description: In 2001, a rare swarm of small, shallow earthquakes beneath the city of Spokane, Washington, caused ground shaking as well as audible booms over a five-month period. Subsequent Interferometric Synthetic Aperture Radar (InSAR) data analysis revealed an area of surface uplift in the vicinity of the earthquake swarm. To investigate the potential faults that may have caused both the earthquakes and the topographic uplift, we collected ~3 km of high-resolution seismic-reflection profiles to image the upper-source region of the swarm. The two profiles reveal a complex deformational pattern within Quaternary alluvial, fluvial, and flood deposits, underlain by Tertiary basalts and basin sediments. At least 100 m of arching on a basalt surface in the upper 500 m is interpreted from both the seismic profiles and magnetic modeling. Two west-dipping faults deform Quaternary sediments and project to the surface near the location of the Spokane fault defined from modeling of the InSAR data.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈span〉〈div〉Abstract〈/div〉At the 2015 United Nations International Climate Change Conference in Paris (COP21), 197 national parties committed to limit global warming to well below 2°C. But current plans and pace of progress are still far from sufficient to achieve this objective. Here we review the role that geoscience and the subsurface could play in decarbonizing electricity production, industry, transport and heating to meet UK and international climate change targets, based on contributions to the 2019 Bryan Lovell meeting held at the Geological Society of London. Technologies discussed at the meeting involved decarbonization of electricity production via renewable sources of power generation, substitution of domestic heating using geothermal energy, use of carbon capture and storage (CCS), and more ambitious technologies such as bioenergy and carbon capture and storage (BECCS) that target negative emissions. It was noted also that growth in renewable energy supply will lead to increased demand for geological materials to sustain the electrification of the vehicle fleet and other low-carbon technologies. The overall conclusion reached at the 2019 Bryan Lovell meeting was that geoscience is critical to decarbonization, but that the geoscience community must influence decision-makers so that the value of the subsurface to decarbonization is understood.〈/span〉
    Print ISSN: 1354-0793
    Electronic ISSN: 2041-496X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-02
    Description: The Carboniferous Bowland Shale of northern England has drawn considerable attention because it has been estimated to have 1329 trillion cubic feet hydrocarbons in-place (gas and liquids) resource potential (Andrews 2013). Here we report on the oil and gas generation characteristics of three selected Bowland Shale whole-rock samples taken from cores and their respective kerogen concentrates. Compositional kinetics and phase properties of the primary and secondary fluids were calculated through the PhaseKinetics and GOR-Fit approaches and PVT modelling software. The three Bowland Shale samples contain immature, marine type II kerogen. Pyrolysate compositions imply primary generation of paraffinic–naphthenic–aromatic (PNA) oil with low contents of wax and sulphur. Bulk kinetic parameters have many similarities to those of productive American Palaeozoic marine shale plays. The secondary gas generation potential of Bowland Shale is greater than the primary gas potential although it requires a 10 kcal mol –1 higher activation energy to achieve peak production. Primary oil, primary gas and secondary gas reach their maximum generation at 137, 150 and 200°C respectively for a 3°C Ma –1 heating rate. Different driving forces of expulsion including the generation of hydrocarbon and overpressure caused by phase separation during sequential periods of subsidence and uplift could be inferred.
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: 〈span〉〈div〉ABSTRACT〈/div〉Characterizing earthquake ground motions through 3D simulations is becoming standard practice for seismic hazard assessment in urbanized regions. However, accurate ground‐motion predictions require shear‐wave velocity (VS) data at depths that capture the extent of the sedimentary column (usually greater than 30 m), which can be difficult to obtain. We acquired microtremor array data at 11 sites in the Seattle basin, Washington, and applied the wavenumber‐normalized spatial autocorrelation (SPAC) method (krSPAC) to obtain VS at depths as great as 2200 m. In a traditional SPAC approach, modeling high wavenumbers within the SPAC spectrum requires array symmetry. By contrast, in the krSPAC approach we transform observed coherency versus frequency spectra to coherency versus kr (in which k and r are wavenumber and station separation, respectively) prior to VS modeling. Through this transformation, the requirement for array symmetry is eased. We deployed seven‐sensor nested irregular triangular arrays, with nominal interstation spacings that varied from about 300 to 2000 m. Comparison of VS derived from krSPAC to a previous interpretation from ambient‐noise tomography studies suggests a broadly comparable VS structure in the 250–1000 m depth range with improved resolution at shallower depth. At each site, we interpret a high‐velocity Quaternary boundary in which VS increases above 900  m/s. Using this boundary as the reference horizon, we calculate ground‐motion amplification of a factor of up to 2 from the overlying Quaternary sediments between 0.3 and 7 Hz, assuming vertically propagating 〈span〉S〈/span〉 waves.〈/span〉
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: 〈span〉〈div〉Abstract〈/div〉At the 2015 United Nations international climate change conference in Paris (COP21), 197 national parties committed to limit global warming to well below 2°C. But current plans and pace of progress are still far from sufficient to achieve this objective. Here we review the role that geoscience and the subsurface could play in decarbonising electricity production, industry, transport, and heating, to meet UK and international climate change targets, based on contributions to the 2019 Bryan Lovell meeting held at the Geological Society of London. Technologies discussed at the meeting involved decarbonisation of electricity production via renewable sources of power generation, substitution of domestic heating using geothermal energy, use of carbon capture and storage (CCS), and more ambitious technologies such as bioenergy and carbon capture and storage (BECCS) that target negative emissions. It was noted also that growth in renewable energy supply will lead to increased demand for geological materials to sustain the electrification of the vehicle fleet and other low-carbon technologies. The overall conclusion reached at the 2019 Bryan Lovell meeting was that geoscience is critical to decarbonisation, but that the geoscience community must influence decision makers so that the value of the subsurface to decarbonisation is understood.〈/span〉
    Print ISSN: 1354-0793
    Electronic ISSN: 2041-496X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018
    Description: 〈p〉This review of the role of the mantle lithosphere in plate tectonic processes collates a wide range of recent studies from seismology and numerical modelling. A continually growing catalogue of deep geophysical imaging has illuminated the mantle lithosphere and generated new interpretations of how the lithosphere evolves. We review current ideas about the role of continental mantle lithosphere in plate tectonic processes. Evidence seems to be growing that scarring in the continental mantle lithosphere is ubiquitous, which implies a reassessment of the widely held view that it is the inheritance of crustal structure only (rather than the lithosphere as a whole) that is most important in the conventional theory of plate tectonics (e.g. the Wilson cycle). Recent studies have interpreted mantle lithosphere heterogeneities to be pre-existing structures and, as such, linked to the Wilson cycle and inheritance. We consider the current fundamental questions in the role of the mantle lithosphere in causing tectonic deformation, reviewing recent results and highlighting the potential of the deep lithosphere in infiltrating every aspect of plate tectonics processes.〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-04-15
    Description: The Carboniferous Bowland Shale of northern England has drawn considerable attention because it has been estimated to have 1329 trillion cubic feet hydrocarbons in-place (gas and liquids) resource potential (Andrews 2013). Here we report on the oil and gas generation characteristics of three selected Bowland Shale whole-rock samples taken from cores and their respective kerogen concentrates. Compositional kinetics and phase properties of the primary and secondary fluids were calculated through the PhaseKinetics and GOR-Fit approaches and PVT modelling software. The three Bowland Shale samples contain immature, marine type II kerogen. Pyrolysate compositions imply primary generation of paraffinic–naphthenic–aromatic (PNA) oil with low contents of wax and sulphur. Bulk kinetic parameters have many similarities to those of productive American Palaeozoic marine shale plays. The secondary gas generation potential of Bowland Shale is greater than the primary gas potential although it requires a 10 kcal mol –1 higher activation energy to achieve peak production. Primary oil, primary gas and secondary gas reach their maximum generation at 137, 150 and 200°C respectively for a 3°C Ma –1 heating rate. Different driving forces of expulsion including the generation of hydrocarbon and overpressure caused by phase separation during sequential periods of subsidence and uplift could be inferred.
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-11-04
    Description: We collected new high-resolution P -wave seismic-reflection data to explore for possible faults beneath a roughly linear cluster of early to mid-Holocene earthquake-induced sand blows to the south of Marianna, Arkansas. The Daytona Beach sand blow deposits are located in east-central Arkansas about 75 km southwest of Memphis, Tennessee, and about 80 km south of the southwestern end of the New Madrid seismic zone (NMSZ). Previous studies of these sand blows indicate that they were produced between 10,500 and 5350 yr B.P. (before A.D. 1950). The sand blows are large and similar in size to those in the heart of the NMSZ produced by the 1811–1812 earthquakes. The seismic-reflection profiles reveal a previously unknown zone of near-vertical faults imaged in the 100–1100-m depth range that are approximately coincident with a cluster of earthquake-induced sand blows and a near-linear surface lineament composed of air photo tonal anomalies. These interpreted faults are expressed as vertical discontinuities with the largest displacement fault showing about 40 m of west-side-up displacement at the top of the Paleozoic section at about 1100 m depth. There are about 20 m of folding on reflections within the Eocene strata at 400 m depth. Increasing fault displacement with depth suggests long-term recurrent faulting. The imaged faults within the vicinity of the numerous sand blow features could be a causative earthquake source, although it does not rule out the possibility of other seismic sources nearby. These newly located faults add to a growing list of potentially active Pleistocene–Holocene faults discovered over the last two decades that are within the Mississippi embayment region but outside of the historical NMSZ.
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: 〈span〉〈div〉Abstract〈/div〉Elevated topography is evident across the continental margins of the Atlantic. The Cumberland Peninsula, Baffin Island, formed as the result of rifting along the Labrador-Baffin margins in the late Mesozoic and is dominated by low relief high elevation topography. Apatite fission track (AFT) analysis of the landscape previously concluded that the area has experienced a differential protracted cooling regime since the Devonian; however, defined periods of cooling and the direct causes of exhumation were unresolved. This work combines the original AFT data with 98 apatite new (U-Th)/He ages from 16 samples and applies the newly developed ‘broken crystals’ technique to provide a greater number of thermal constraints for thermal history modelling to better constrain the topographic evolution. The spatial distribution of AFT and AHe ages implies exhumation has been significant toward the SE (Labrador) coastline, while results of thermal modelling outline three notable periods of cooling in the pre-rift (460 Ma – 200 Ma), from syn-rift to present (120 Ma – 0 Ma) and within post-rift (30 Ma – 0 Ma) stages. Pre-rift cooling is interpreted as the result of exhumation of Laurentia, syn-rift cooling as the result of rift flank uplift to the SE and differential erosion of landscape, while the final post-rift period is likely an artefact of the modelling process. These results suggest the source of the Cumberland Peninsula's modern-day elevated topography is uplift during rifting in the Cretaceous and the isostatic compensation following continuous Mesozoic and Cenozoic differential erosion. This work highlights the how interaction of rift tectonics and isostasy can be the principal source for modern elevated continental margins, while also providing insight into the pre-rift exhumational history of central Laurentia.〈strong〉Supplementary material:〈/strong〉〈a href="https://doi.org/10.6084/m9.figshare.c.4528409"〉https://doi.org/10.6084/m9.figshare.c.4528409〈/a〉〈/span〉
    Print ISSN: 0370-291X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...