ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2018-07-03
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-28
    Description: We apply a spectral decomposition approach to isolate the source spectra from propagation and site effects and, in turn, to estimate the source parameters of small-to-moderate earthquakes that occurred in central Italy. The data set is composed of about 400,000 waveforms relevant to 4111 earthquakes in the moment magnitude range 1.5–6.5, recorded by a high-density network of stations installed in the study area. We first investigate the reliability of the source parameters for small magnitudes through numerical simulations. We generate synthetic spectra for different source scaling models and near-surface attenuation effects, considering the source–station geometry and the data availability of the central Italy data set. Our analysis with synthetics shows that the spectral decomposition is effective in isolating the source contributions from other factors. Moreover, the analysis of the residual distributions suggests that moment magnitude 1.8 is the lower bound for the retrieval of reliable Brune’s source parameters, although we observe an increase of residual’s variability below magnitude 3, and the estimated source parameters could be biased below magnitude 2.3. Remarkably, the assessment of the stress drop Δσ for small events is strongly hampered by site-specific attenuation near the surface. In view of the results with synthetics, we analyze the source parameters of earthquakes recorded in central Italy. The corner frequency versus seismic moment relationship describes a source scaling in which Δσ increases with increasing moment magnitude Mw, the mean Δσ varying from 0.1 MPa for Mw5. In particular, Δσ increases mainly for Mw in the ranges 2.5–3 and 4.5–5.2. The corner frequencies estimated from the apparent source spectra do not show any dependence on hypocentral distance and magnitude, confirming that uncorrected anelastic attenuation effects do not significantly bias the results.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-15
    Description: We derive a set of regional ground‐motion prediction equations (GMPEs) in the Fourier amplitude spectra (FAS‐GMPE) and in the spectral acceleration (SA‐GMPE) domains for the purpose of interpreting the between‐event residuals in terms of source parameter variability. We analyze a dataset of about 65,000 recordings generated by 1400 earthquakes (moment magnitude 2.5≤Mw≤6.5, hypocentral distance Rhypo≤150  km) that occurred in central Italy between January 2008 and October 2017. In a companion article (Bindi, Spallarossa, et al., 2018), the nonparametric acceleration source spectra were interpreted in terms of ω‐square models modified to account for deviations from a high‐frequency flat plateau through a parameter named ksource. Here, the GMPEs are derived considering the moment (Mw), the local (ML), and the energy (Me) magnitude scales, and the between‐event residuals are computed as random effects. We show that the between‐event residuals for the FAS‐GMPE implementing Mw are correlated with stress drop, with correlation coefficients increasing with increasing frequency up to about 10 Hz. Contrariwise, the correlation is weak for the FAS‐GMPEs implementing ML and Me, in particular between 2 and 5 Hz, where most of the corner frequencies lie. At higher frequencies, all models show a strong correlation with ksource. The correlation with the source parameters reflects in a different behavior of the standard deviation τ of the between‐event residuals with frequency. Although τ is smaller for the FAS‐GMPE using Mw below 1.5 Hz, at higher frequencies, the model implementing either ML or Me shows smaller values, with a reduction of about 30% at 3 Hz (i.e., from 0.3 for Mw to 0.1 for ML). We conclude that considering magnitude scales informative for the stress‐drop variability allows to reduce the between‐event variability with a significant impact on the hazard assessment, in particular for studies in which the ergodic assumption on site is removed.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-31
    Description: We present Rapid Assessment of MOmeNt and Energy Service (RAMONES), a service for disseminating through a web interface, the estimates of seismic moment (M0) and radiated energy (ER) for earthquakes occurring in central Italy with local magnitudes above 1.7. The service is based on a fully-automatic procedure developed for downloading and processing open seismological data from the European Integrated Data Archive, Italian Civil Protection repository, and Incorporated Research Institutions for Seismology (IRIS). In its actual configuration, RAMONES uses the seismic catalog generated through the event webservice of the Italian Institute of Geophysics and Volcanology (compliant with International Federation of Digital Seismograph Networks standards) to guide the data download. The concept of RAMONES is to estimate M0 and ER from features extracted directly from recordings, namely the S-wave peak displacement (PDS) and the integral of the squared velocity (IV2S) evaluated over the S-wave window at local distances. A data set composed of 6515 earthquakes recorded in central Italy between 2008 and 2018 was used to calibrate the attenuation models relating M0 to PDS and ER to IV2S, including station corrections. The calibration values for M0 and ER were extracted from the source spectra obtained by applying a decomposition approach to the Fourier amplitude spectra known as the generalized inversion technique. To test the capabilities of RAMONES, we validate the attenuation models by performing residual analysis over about 60 earthquakes occurring in 2019 that were used for the spectral decomposition analysis but not considered in the calibration phase. Since January 2020, a testing operational phase has been running, and RAMONES has analyzed about 800 earthquakes by September 2020. The distribution of the source parameters and their relevant scaling relationships are automatically computed and disseminated in the form of maps, parametric tables, figures, and reports available through the RAMONES web interface.
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-10-03
    Description: In part 1, we run multiple GIT decomposition for different choices of model assumptions, namely three different window duration for Fourier calculation, two different parametrization of the attenuation, two different site constraints. We also considered different source models (Brune, Boatwright, Brune with kappa_source) and different approaches to estimate uncertainties of source parameters (i.e., considering the covariance matrix, Monte Carlo sampling of the residual distribution, model selection with threshold based on F-test).
    Description: As part of the community stress-drop validation study initiative, we apply a spectral decomposition approach to isolate the source spectra of 556 events occurred during the 2019 Ridgecrest sequence (Southern California). We perform multiple decompositions by introducing alternative choices for some processing and model assumptions, namely: three different S-wave window durations (i.e., 5 s, 20 s, and variable between 5 and 20 s); two attenuation models that account differently for depth dependencies; and two different site amplification constraints applied to restore uniqueness of the solution. Seismic moment and corner frequency are estimated for the Brune and Boatwright source models, and an extensive archive including source spectra, site amplifications, attenuation models, and tables with source parameters is disseminated as the main product of the present study. We also compare different approaches to measure the precision of the parameters expressed in terms of 95% confidence intervals (CIs). The CIs estimated from the asymptotic standard errors and from Monte Carlo resampling of the residual distribution show an almost one-to-one correspondence; the approach based on model selection by setting a threshold for misfit chosen with an F-ratio test is conservative compared to the approach based on the asymptotic standard errors. The uncertainty analysis is completed in the companion article in which the outcomes from this work are used to compare epistemic uncertainty with precision of the source parameters.
    Description: Published
    Description: 1980–1991
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Keywords: source parameters ; GIT ; uncertainties ; moment magnitude ; corner frequency ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-10-03
    Description: This paper is the second part of a previous publication (Bindi et al. 2023 DOI: 10.1785/0220230019). All the decompositions of part 1 are organized in a sort of logic tree and mixed-effect regressions are performed to partition the variability into contributions related to duration, attenuation and site-constraint grouping factors. Statistical uncertainties computed in part 1 (i.e., coming from the fit) are compared with epistemic uncertainties associated to the logic tree, and Sammon's maps are used to visualize the impact of the grouping factors on the overall shape of the source spectra.
    Description: As part of the community stress‐drop validation study, we evaluate the uncertainties of seismic moment M0 and corner frequency fc for earthquakes of the 2019 Ridgecrest sequence. Source spectra were obtained in the companion article by applying the spectral decomposition approach with alternative processing and model assumptions. The objective of the present study is twofold: first, to quantify the impact of different assumptions on the source parameters; and second, to use the distribution of values obtained with different assumptions to estimate an epistemic contribution to the uncertainties. Regarding the first objective, we find that the choice of the attenuation model has a strong impact on fc results: by introducing a depth‐dependent attenuation model, fc estimates of events shallower than 6 km increase of about 10%. Also, the duration of the window used to compute the Fourier spectra show an impact on fc ⁠: the average ratio between the estimates for 20 s duration to those for 5 s decreases from 1.1 for Mw〈3 to 0.66 for Mw〉4.5. For the second objective, we use a mixed‐effect regression to partition the intraevent variability into duration, propagation, and site contributions. The standard deviation ϕ of the intraevent residuals for log(fc) is 0.0635, corresponding to a corner frequency ratio 102ϕ=1.33. When the intraevent variability is compared to uncertainties on log(fc), we observe that 2ϕ is generally larger than the 95% confidence interval of log(fc), suggesting that the uncertainty of the source parameters provided by the fitting procedure might underestimate the model‐related (epistemic) uncertainty. Finally, although we observe an increase of log(Δσ) with log(M0) regardless of the model assumptions, the increase of Δσ with depth depends on the assumptions, and no significant trends are detected when depth‐dependent attenuation and velocity values are considered.
    Description: Published
    Description: 1992–2002
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...