ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Sears Foundation for Marine Research
    Publication Date: 2022-05-25
    Description: Author Posting. © Sears Foundation for Marine Research, 2005. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 63 (2005): 729-752, doi:10.1357/0022240054663204.
    Description: The properties of water mass transformation and the thermohaline circulation in shallow marginal seas with topography and subject to surface cooling are discussed in the context of an eddy-resolving primitive equation model and an analytic planetary geostrophic model. A unique and important aspect of the model configuration is that the geostrophic contours, or characteristics of the system, extend from a region where temperature is restored toward a uniform value, providing a source of heat, through the cooling region. This removes a degree of symmetry that has often been imposed in previous studies of deep convection. The heat loss within the marginal sea is balanced by lateral advection from the restoring region. The planetary geostrophic model shows that the basic temperature distribution can be well predicted by integrating along geostrophic contours from their entry into the marginal sea to their exit. Scaling estimates for the exchange rate and density of the waters formed within the marginal sea are derived and compare well with a series of numerical model calculations. In contrast to many previous buoyancy-forced deep convection problems, basin-scale cooling is balanced mainly by the mean flow, with mesoscale eddies serving primarily to restratify locally but not to provide a net heat flux to balance cooling. However, eddy fluxes and the mean flow are locally of comparable importance for cases with a localized patch of surface cooling.
    Description: This work was supported by the Office of Naval Research under Grant N00014-03-1-0338 and by the National Science Foundation under Grant OCE-0240978.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1589446 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Sears Foundation for Marine Research
    Publication Date: 2022-05-25
    Description: Author Posting. © Sears Foundation for Marine Research, 2009. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 67 (2009): 273-303, doi:10.1357/002224009789954757.
    Description: An idealized model for a convective basin is used to investigate the mechanisms of variability of the formation and export of dense water. In this model, which consists of two isopycnic layers, dense water formation is induced by surface buoyancy loss in the interior, which is at rest. Newly formed dense water is transmitted to the surrounding boundary current through parameterized eddy fluxes. Variability in the formation and export of dense water is due to changes in the two main drivers: variations in the surface buoyancy fluxes and variations in the large-scale wind via a barotropic boundary current. Numerical integrations of the nonlinear model, with parameters and forcings corresponding to the Labrador Sea, show that the rate of dense water formation in the interior of the basin is strongly affected by changes in the buoyancy forcing, but not significantly affected by seasonal to interannual changes in the wind-driven barotropic boundary current. The basin tends to integrate the buoyancy forcing variability with a memory time scale set by eddies, which is decadal for the Labrador Sea. Variability in dense water export, on the contrary, is strongly affected by changes in the wind-driven barotropic boundary current but hardly affected by changes in buoyancy forcing. Indeed changes in the transport of dense water at the basin outflow are dominated by those at the basin inflow, which, in this model, are directly related to fluctuations in the wind-driven barotropic boundary current. These results, which are consistent with analytical solutions of the linear model, suggest that fluctuations in the surface buoyancy fluxes in the interior Labrador Sea have little impact on the interannual variability of the dense water transport by the Deep Western Boundary Current at the outflow of the Labrador Sea, which is dominated by fluctuations in the wind-driven North Atlantic subpolar gyre, but influence the formation and export of recently ventilated waters.
    Description: Support for JD from the NOAA Office of Hydrologic Development through a scientific appointment administered by UCAR is gratefully acknowledged. Support for FS was provided by NSF grant OCE−0525929. Support for MAS was provided by NSF grant OCE−0423975.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Sears Foundation for Marine Research, 2008. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 66 (2008): 325-345, doi:10.1357/002224008786176016.
    Description: The properties of water mass transformation in a semi-enclosed basin, separated from the open ocean by a sill and subject to surface cooling, are analyzed both theoretically and numerically using an ocean general circulation model. This study extends previous studies of convection in a marginal sea to the case with a sill. The sill has a strong impact on both the properties of the dense water formed in the interior and on those of the waters flowing out the marginal sea. It results in a colder interior and colder outflow compared to the case with no sill. Dynamically, this is explained by considering that the sill limits the geostrophic contours over which the open ocean/marginal sea exchange can occur. The impact of the sill, however, is not simply limited to a topographic constriction; instead the sill also decreases the stability of the boundary current, which, in turn, results in relatively large heat flux into the interior and colder outflow. The theories that relate the properties of the dense waters formed in the interior, and those of the outflow, are modified to include the impact of the sill. These are found to compare well with the numerical simulations and provide a useful tool for the interpretation of these results. These idealized simulations capture the basic features of the water mass transformation processes in the Nordic Seas and, in particular, provide a dynamical explanation for the difference between the dense waters formed and the source of the overflows water.
    Description: DI was supported by the Polar Ocean Climate Processes (ProClim) project funded by the Norwegian Research Council. FS was supported by a visiting scientist fellowship from the Bjerknes Centre for Climate Research (Bergen, Norway) and by NSF Ocean Sciences Grant 0525929. Support for MAS was provided by NSF Office of Polar Programs Grant 0421904 and NSF Ocean Sciences Grant 0423975.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © Sears Foundation for Marine Research, 2010. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 68 (2010): 215-236, doi:10.1357/002224010793721424.
    Description: Using a fully-implicit high-resolution two-layer quasi-geostrophic model combined with pseudo-arclength continuation methods, we perform a bifurcation analysis of double-gyre ocean flows to study their initial oscillatory instabilities. In this model, both wind- and thermally-forced flows can be represented. We demonstrate that on the branch of anti-symmetric steady-state solutions the ratio, Ω, of the flow advective speed to the long internal Rossby wave speed determines the type of oscillatory modes to first become unstable. This is the same nondimensional parameter that controls the shape of the geostrophic contours in the linear limit of the circulation. For large values of Ω, the first Hopf bifurcations correspond to the classical baroclinic modes with inter-monthly time periods arising from shear instability of the flow. For small values of Ω, the first Hopf bifurcations correspond instead to barotropic Rossby modes with shorter, monthly periods arising from mixed barotropic-baroclinic instability of the flow. By considering both a wind-forced and a thermally-forced ocean, we show that this is a robust feature that does not depend on the type of forcing driving the circulation.
    Description: NSF Grant OCE-0423975, NSF Grants OCE-042975 and OCE-0850416
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Sears Foundation for Marine Research
    Publication Date: 2022-05-26
    Description: Author Posting. © Sears Foundation for Marine Research, 2014. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 72 (2014): 73-94.
    Description: The influence of topography in a basin interior on the separation and time-dependence of strongly nonlinear western boundary currents is explored using a shallow water numerical model and scaling theory. In the linear limit, the western boundary current follows the western boundary to the latitude of the gap in the interior topography where it then separates from the coast and flows eastward in a narrow jet. As nonlinearity is increased, the flow initially remains steady but develops a series of stationary meanders extending off the western boundary at the separation latitude. For strongly nonlinear flows the solutions become time-dependent. The mean separation latitude continues to be tied to the interior topography even though the mean zonal flow far exceeds the baroclinic wave speed. In most cases, the variability is dominated by westward-propagating cyclonic and anticyclonic meanders of the separated western boundary current. The behavior on the western boundary alternates between an overshoot of the western boundary current with an anticyclonic meander and a premature separation of the western boundary current with the poleward formation of an anticyclonic eddy. The mean flow is consistent with the separation latitude of the North Atlantic Current to the west of the Charlie Gibbs Fracture Zone and the time-dependence shows many similarities with the observed variability of the East Australian Current to the west of New Zealand. The wave length of the meanders and the frequency and amplitude of the oscillations are well predicted by a simple scaling that accounts for wave propagation, nonlinear advection, and a viscous sublayer along the western boundary.
    Description: This study was supported by the National Science Foundation under Grants OCE-0826656, OCE-0959381 and OCE-1232389.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © The Authors, 2017. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 75 (2017): 605-639, doi:10.1357/002224017822109505.
    Description: Shipboard hydrographic and velocity sections are used to quantify aspects of the North Icelandic Jet (NIJ), which transports dense overflow water to Denmark Strait, and the North Icelandic Irminger Current (NIIC), which imports Atlantic water to the Iceland Sea. The mean transports of the two currents are comparable, in line with previous notions that there is a local overturning cell in the Iceland Sea that transforms the Atlantic water to dense overflow water. As the NIJ and NIIC flow along the north side of Iceland, they appear to share a common front when the bottom topography steers them close together, but even when they are separate there is a poleward flow inshore of the NIJ. The interannual variability in salinity of the inflowing NIIC is in phase with that of the outflowing NIJ. It is suggested, however, that the NIIC signal does not dictate that of the NIJ. Instead, the combination of liquid and solid freshwater flux from the east Greenland boundary can account for the observed net freshening of the NIIC to the NIJ for the densest half of the overturning circulation in the northwest Iceland Sea. This implies that the remaining overturning must occur in a different geographic area, consistent with earlier model results. The year-to-year variability in salinity of the NIJ can be explained by applying annual anomalies of evaporation minus precipitation over the Iceland Sea to a one-dimensional mixing model. These anomalies vary in phase with the wind stress curl over the North Atlantic subpolar gyre, which previous studies have shown drives the interannual variation in salinity of the inflowing NIIC.
    Description: Funding for the project was provided by the National Science Foundation under grants OCE-1558742 (RSP, MAS, DJT, CN), OCE-1433170 (MAS), and OCE-0959381 (DM); the Norwegian Research Council under grant agreement no. 231647 (KV); the Bergen Research Foundation (KV); the European Union Seventh Framework Programme (FP7 2007-2013) under grant agreement 308299 (NACLIM project, KV, HV, and SJ); and the Natural Sciences and Engineering Research Council of Canada (GWKM).
    Keywords: Boundary currents ; Overturning circulation ; Overflow water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...