ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: SR 90.0002(1407-A)
    In: Professional paper
    Type of Medium: Series available for loan
    Pages: VI, A49 S.
    Series Statement: U.S. Geological Survey professional paper 1407-A
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-05-22
    Description: Reconstructed Holocene lake-level curves from two saline, hydrologically closed maar crater lakes in southwestern Victoria, Australia, show near synchronous lake-level changes throughout the Holocene. We show that lake levels, reconstructed from sediment particle size and ostracod valve chemistry ( 18 O and Sr/Ca) have undergone rapid (〈100 yr), large (〉10 m) fluctuations throughout the Holocene. Finer sampling resolution shows a more sensitive response to Holocene climate than was previously presented for Lake Keilambete. Both maar crater lakes show a short-lived maximum in Holocene lake levels around 7.2 ka. The period of lake filling leading to peak lake levels matches the phase of most effective precipitation (7.4–7.0 ka) reconstructed from a high-resolution speleothem record from northern Tasmania. Water levels declined in both lakes during the mid Holocene, with a more substantive decline after ~5 ka which coincides with the end of the Southern Hemisphere hypsithermal. Water levels continued to oscillate with a periodicity of around 300–700 years, before reaching a late-Holocene nadir around 1.8 ka (Keilambete) and 1.3 ka (Gnotuk). The trend and periodicity of oscillations in the maar water levels show commonalities to D in the Dome C ice core, and suggest that temperature may be a significant component in influencing the Precipitation/Evaporation (P/E) ratio in southeastern Australia during the Holocene.
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...