ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    INTER-RESEARCH
    In:  EPIC3Aquatic Microbial Ecology, INTER-RESEARCH, 80, pp. 181-192, ISSN: 0948-3055
    Publication Date: 2017-10-06
    Description: ABSTRACT: Salinity is an important environmental control of aerobic methane oxidation, which reduces the emission of the potent greenhouse gas methane into the atmosphere. The effect of salinity on methane oxidation is especially severe in river estuaries and adjacent coastal waters, which are important sources of methane emission and, at the same time, are usually characterized by pronounced salinity gradients. Using methane oxidation rates determined by a radiotracer technique as a measure of methanotrophic activity, we tested the effect of immediate and gradual salinity changes on pure cultures of methanotrophic bacteria, and natural freshwater (Elbe River) and natural marine (North Sea) methanotrophic populations. According to our results, Methylomonas sp. and Methylosinus trichosporium are resistant to an increase in salinity, whereas Methylovulum sp. and Methylobacter luteus are sensitive to such an increase. Natural methanotrophic populations from freshwater are more resistant to an increase in salinity than those from marine water are to a decrease in salinity. In contrast to an immediate change of salinity, gradual change (1.25 PSU d−1) can attenuate salinity stress. Experiments with the natural populations revealed different reactions to changes in salinity; thus, we assume that the initial composition of the methanotrophic population, i.e. the ratio of sensitive versus resistant strains, also governs the community response to salinity stress.Repeated experiments with the natural populations revealed different reactions to changes of salinity; thus we assume that the initial composition of the methanotrophic population, i.e. the ratio of sensitive and resistant strains, also governs the community response to salinity stress.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    INTER-RESEARCH
    In:  EPIC3Aquatic Microbial Ecology, INTER-RESEARCH, 83, pp. 35-48, ISSN: 0948-3055
    Publication Date: 2019-05-24
    Description: Shelf sea areas are the primary oceanic source for methane release, the most abundant hydrocarbon in the atmosphere. As such, the southern North Sea’s methane concentration is mainly determined by river runoff and tidal marshes. Within such a highly variable temperate estuary, this study is the first to reveal detailed information on the in situ activity, abundance and community structure of methane oxidizing bacteria along a transect from the marine environment near Helgoland island to the riverine harbor of Hamburg, Germany. The in situ methane oxidation rate was determined with a radio tracer, and methane concentration with the head-space method. Abundance and diversity of the methanotrophic bacterial community in the water column was assessed with quantitative polymerase chain reaction for the particulate methane monooxygenase and monooxygenase intergenic spacer analysis. Median abundances ranged from 2.8 × 104 cells l−1 in the marine environment to 7.5 × 105 cells l−1 in the riverine environment. Except for salinity, no conclusive linear correlation between any environmental parameter and the abundance of methanotrophs could be determined. Relating activity with abundance of methanotrophs showed that about 70% of the population is inactive, especially in the coastal and marine environment. This study found distinct operational taxonomic unit (OTU) community compositions among the 3 environmental categories (river, coast, marine). Several identified OTUs have been reported previously and imply a wide geographic occurrence. Overall, we propose that salinity is the most important driver of differing communities in the riverine, coastal and marine environment.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    SPRINGER
    In:  EPIC3Biogeochemistry, SPRINGER, ISSN: 0168-2563
    Publication Date: 2019-07-16
    Description: In the eastern part of Lake Constance, the second largest pre-alpine Lake in Europe, about five hundred pockmarks (morphological depressions on the lake floor) were recently discovered of which ~ 40% release methane bubbles. The carbon isotopic composition of the escaping gas indicated that the methane is of biogenic origin. In our study, we investigated the fate of the released methane bubbles, i.e., the dissolution, oxidation or transport of the bubbles to the surface. At a littoral pockmark site (PM12, 12 m water depth) and a profundal pockmark (PM80, 80 m water depth), we analysed the dissolved methane concentrations and the methane isotopic carbon signature in the water column. At PM80, higher methane concentrations (up to 1523 nM), compared to the control site and the surface waters (225 ± 72 nM), were recorded only on some occasions and only in the bottom water, despite the fact that the released bubbles were dissolving within the hypolimnion based on bubble modeling. The isotope data suggest that most of the dissolved methane is oxidized below 40 m water depth. The isotopic signature of the methane in the surface water at PM80, however, differed from that of the methane in the hypolimnion; therefore, the surface methane at this profundal site is most likely an export product from the littoral zone. Assuming an initial bubble diameter of 5 mm, we calculated that these small bubbles would reach the surface, but approximately 96% of the methane would have dissolved from the bubble into the hypolimnion. At PM12, we observed higher concentrations of dissolved methane (312 ± 52 nM) with no significant differences between seasons or between control sites versus pockmark site. In the shallow water, divers estimated the bubble size to be 10 - 15 mm, which from a release depth of 12 m would barely dissolved in to the water column. The isotopic signature also indicated that there had been almost no methane oxidation in the shallow water column. Thus, the water depth of bubble release as well as the initial bubble size determine whether the methane enters the atmosphere largely unhindered (shallow site) or if the released methane is incorporated into the profundal water column.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...