ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (4)
  • George Deacon Division for Ocean Processes, Southampton Oceanography Centre, University of Southampton  (1)
  • Royal Society of London  (1)
  • American Association for the Advancement of Science (AAAS)
Collection
Publisher
  • 1
    Publication Date: 2014-08-19
    Description: We present high-resolution autonomous measurements of carbon dioxide partial pressure p(CO2) taken in situ at the Porcupine Abyssal Plain sustained observatory (PAP-SO) in the Northeast Atlantic (49° N, 16.5° W; water depth of 4850 m) for the period 2010 to 2012. Measurements of p(CO2) made at 30 m depth on a sensor frame are compared with other autonomous biogeochemical measurements at that depth (including chlorophyll a-fluorescence and nitrate concentration data) to analyse weekly to seasonal controls on p(CO2) flux in the inter-gyre region of the North Atlantic. Comparisons are also made with in situ regional time-series data from a ship of opportunity and mixed layer depth (MLD) measurements from profiling Argo floats. There is a persistent under saturation of CO2 in surface waters throughout the year which gives rise to a perennial CO2 sink. Comparison with an earlier dataset collected at the site (2003 to 2005) confirms seasonal and inter-annual changes in surface seawater chemistry. There is year-to-year variability in the timing of stratification and deep winter mixing. The 2010 to 2012 period shows an overall increase in p(CO2) values when compared to the 2003–2005 period. This is despite similar surface temperature, wind speed and MLD measurements between the two periods of time. Future work should incorporate daily CO2 flux measurements made using CO2 sensors at 1 m depth and the in situ wind speed data now available from the UK Met Office Buoy.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-01
    Description: In this study we present hydrography, biogeochemistry and sediment trap observations between 2003 and 2012 at Porcupine Abyssal Plain (PAP) sustained observatory in the northeast Atlantic. The time series is valuable as it allows for investigation of the link between surface productivity and deep ocean carbon flux. The region is a perennial sink for CO2, with an average uptake of around 1.5 mmol m−2 d−1. The average monthly drawdowns of inorganic carbon and nitrogen were used to quantify the net community production (NCP) and new production, respectively. Seasonal NCP and new production were found to be 4.57 ± 0.27 mol C m−2 and 0.37 ± 0.14 mol N m−2. The Redfield ratio was high (12), and the production calculated from carbon was higher than production calculated from nitrogen, which is indicative of carbon overconsumption. The export ratio and transfer efficiency were 16 and 4%, respectively, and the site thereby showed high flux attenuation. Particle tracking was used to examine the source region of material in the sediment trap, and there was large variation in source regions, both between and within years. There were higher correlations between surface productivity and export flux when using the particle-tracking approach, than by comparing with the mean productivity in a 100 km box around the PAP site. However, the differences in correlation coefficients were not significant, and a longer time series is needed to draw conclusions on applying particle tracking in sediment trap analyses.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-10-15
    Description: In this study we present hydrography, biogeochemistry and sediment trap observations between 2003 and 2012 at Porcupine Abyssal Plain (PAP) sustained observatory in the Northeast Atlantic. The time series is valuable as it allows for investigation of the link between surface productivity and deep ocean carbon flux. The region is a perennial sink for CO2, with an average uptake of around 1.5 mmol m−2 day−1. The average monthly drawdowns of inorganic carbon and nitrogen were used to quantify the net community production (NCP) and new production. Seasonal NCP and new production were found to be 4.57 ± 0.85 mol C m−2 and 0.37 ± 0.14 mol N m−2, respectively. The C : N ratio was high (12) compared to the Redfield ratio (6.6), and the production calculated from carbon was higher than production calculated from nitrogen, which is indicative of carbon overconsumption. The export ratio and transfer efficiency were 16 and 4 %, respectively, and the site thereby showed high flux attenuation. Particle tracking was used to examine the source region of material in the sediment trap, and there was large variation in source regions, both between and within years. There were higher correlations between surface productivity and export flux when using the particle-tracking approach, than by comparing with the mean productivity in a 100 km box around the PAP site. However, the differences in correlation coefficients were not significant, and a longer time series is needed to draw conclusions on applying particle tracking in sediment trap analyses.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-12
    Description: We present high-resolution autonomous measurements of carbon dioxide partial pressure p(CO2) taken in situ at the Porcupine Abyssal Plain sustained Observatory (PAP-SO) in the northeast Atlantic (49° N, 16.5° W; water depth of 4850 m) for the period 2010–2012. Measurements of p(CO2) made at 30 m depth on a sensor frame are compared with other autonomous biogeochemical measurements at that depth (including chlorophyll a fluorescence and nitrate concentration data) to analyse weekly to seasonal controls on p(CO2) flux in the inter-gyre region of the North Atlantic. Comparisons are also made with in situ regional time series data from a ship of opportunity and mixed layer depth (MLD) measurements from profiling Argo floats. There is a persistent under-saturation of CO2 in surface waters throughout the year which gives rise to a perennial CO2 sink. Comparison with an earlier data set collected at the site (2003–2005) confirms seasonal and inter-annual changes in surface seawater chemistry. There is year-to-year variability in the timing of deep winter mixing and the intensity of the spring bloom. The 2010–2012 period shows an overall increase in p(CO2) values when compared to the 2003–2005 period as would be expected from increases due to anthropogenic CO2 emissions. The surface temperature, wind speed and MLD measurements are similar for both periods of time. Future work should incorporate daily CO2 flux measurements made using CO2 sensors at 1 m depth and the in situ wind speed data now available from the UK Met Office Buoy.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    George Deacon Division for Ocean Processes, Southampton Oceanography Centre, University of Southampton
    In:  Southampton Oceanography Centre Cruise Report, 48 . George Deacon Division for Ocean Processes, Southampton Oceanography Centre, University of Southampton, Southampton, UK, 37 pp.
    Publication Date: 2016-01-14
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Royal Society of London
    In:  Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366 (1882). pp. 3919-3945.
    Publication Date: 2020-06-12
    Description: The oceans sequester carbon from the atmosphere partly as a result of biological productivity. Over much of the ocean surface, this productivity is limited by essential nutrients and we discuss whether it is likely that sequestration can be enhanced by supplying limiting nutrients. Various methods of supply have been suggested and we discuss the efficacy of each and the potential side effects that may develop as a result. Our conclusion is that these methods have the potential to enhance sequestration but that the current level of knowledge from the observations and modelling carried out to date does not provide a sound foundation on which to make clear predictions or recommendations. For ocean fertilization to become a viable option to sequester CO 2, we need more extensive and targeted fieldwork and better mathematical models of ocean biogeochemical processes. Models are needed both to interpret field observations and to make reliable predictions about the side effects of large-scale fertilization. They would also be an essential tool with which to verify that sequestration has effectively taken place. There is considerable urgency to address climate change mitigation and this demands that new fieldwork plans are developed rapidly. In contrast to previous experiments, these must focus on the specific objective which is to assess the possibilities of CO 2 sequestration through fertilization. © 2008 The Royal Society.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...