ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    ROYAL SOC CHEMISTRY
    In:  EPIC3Analytical Methods, ROYAL SOC CHEMISTRY, ISSN: 1759-9660
    Publication Date: 2019-09-26
    Description: AFM is a technique widely applied in the nanoscale characterisation of polymers and their surface properties. With nano-FTIR and IR-sSNOM imaging an optical dimension is added to this technique that allows for straightforward high resolution characterisation and spectroscopy of polymers. As the volume sampled by these near-field techniques depends mostly on the radius of the cantilever tip, typically 10 nm, it is orders of magnitude smaller than in conventional techniques. Nevertheless, comparability of nano-FTIR near-field spectra and data from macroscopic methods has been shown. Some relevant polymers such as polystyrene however, prove to be more difficult to detect than others. Furthermore, the small sampled volume suggests lower signal quality of nano-FTIR data and proof of its suitability for a reliable library search identification is lacking. To evaluate the techniques especially towards automatic and higher throughput identification of nanoscale polymers, for example in blends or environmental samples, we examined domain distributions in a PS-LDPE film and spectral responses of foils of the most relevant commercial polymers. We demonstrate the successful library search identification of all samples with nano-FTIR data measured in less than seven minutes/spectrum with a free IR spectra database in combination with established commercial OPUS 7.5 software and recently released freeware siMPle. We discuss aspects affecting the accuracy of the identification for different polymers and show that already the small spectral range of 1700-1300 cm-1 leads to similar success in differentiating between polymer types with near-field data as with conventional far-field FTIR spectroscopy. Even a polymer sample weathered in the environment can be identified without prior cleaning, proving wide fields of applications for characterisation and identification of diverse polymer samples. Finally, we propose measurement and analysis strategies for known and unknown samples with this novel technique.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ROYAL SOC CHEMISTRY
    In:  EPIC3Analytical Methods, ROYAL SOC CHEMISTRY, 9(9), pp. 1499-1511, ISSN: 1759-9660
    Publication Date: 2017-05-29
    Description: The analysis of imaging data derived from micro-Fourier transform infrared (μFTIR) microscopy is a powerful tool allowing the analysis of microplastics enriched on membrane filters. In this study we present an automated approach to reduce the time demand currently needed for data analyses. We developed a novel analysis pipeline, based on the OPUS© Software by Bruker, followed by image analysis with Python and Simple ITK image processing modules. By using this newly developed pipeline it was possible to analyse datasets from focal plane array (FPA) μFTIR mapping of samples containing up to 1.8 million single spectra. All spectra were compared against a database of different synthetic and natural polymers by various routines followed by benchmark tests with focus on accuracy and quality. The spectral correlation was optimized for high quality data generation, which allowed image analysis. Based on these results an image analysis approach was developed, providing information on particle numbers and sizes for each polymer detected. It was possible to collect all data with relative ease even for complex sample matrices. This approach significantly decreases the time demand for the interpretation of complex FTIR-imaging data and significantly increases the data quality.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...