ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    Nature Research
    In:  Nature Communications, 9 (1). Art.Nr. 2566.
    Publikationsdatum: 2021-02-08
    Beschreibung: Mitigating the detrimental effects of climate change is a collective problem that requires global cooperation. However, achieving cooperation is difficult since benefits are obtained in the future. The so-called collective-risk game, devised to capture dangerous climate change, showed that catastrophic economic losses promote cooperation when individuals know the timing of a single climatic event. In reality, the impact and timing of climate change is not certain; moreover, recurrent events are possible. Thus, we devise a game where the risk of a collective loss can recur across multiple rounds. We find that wait and see behavior is successful only if players know when they need to contribute to avoid danger and if contributions can eliminate the risks. In all other cases, act quickly is more successful, especially under uncertainty and the possibility of repeated losses. Furthermore, we incorporate influential factors such as wealth inequality and heterogeneity in risks. Even under inequality individuals should contribute early, as long as contributions have the potential to decrease risk. Most importantly, we find that catastrophic scenarios are not necessary to induce such immediate collective action.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-03-09
    Beschreibung: Almost all animals and plants are inhabited by diverse communities of microorganisms, the microbiota, thereby forming an integrated entity, the metaorganism. Natural selection should favor hosts that shape the community composition of these microbes to promote a beneficial host-microbe symbiosis. Indeed, animal hosts often pose selective environments, which only a subset of the environmentally available microbes are able to colonize. How these microbes assemble after colonization to form the complex microbiota is less clear. Neutral models are based on the assumption that the alternatives in microbiota community composition are selectively equivalent and thus entirely shaped by random population dynamics and dispersal. Here, we use the neutral model as a null hypothesis to assess microbiata composition in host organisms, which does not rely on invoking any adaptive processes underlying microbial community assembly. We show that the overall microbiota community structure from a wide range of host organisms, in particular including previously understudied invertebrates, is in many cases consistent with neutral expectations. Our approach allows to identify individual microbes that are deviating from the neutral expectation and are therefore interesting candidates for further study. Moreover, using simulated communities, we demonstrate that transient community states may play a role in the deviations from the neutral expectation. Our findings highlight that the consideration of neutral processes and temporal changes in community composition are critical for an in-depth understanding of microbiota-host interactions.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...