ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-09-29
    Description: Antibiotics are a vital and commonly used therapeutic tool, but their use also results in profound changes in the intestinal microbiota that can, in turn, have significant health consequences. Understanding how the microbiota recovers after antibiotic treatment will help to devise strategies for mitigating the adverse effects of antibiotics. Using a mouse model, we have characterized the changes occurring in the intestinal microbiota immediately after five days exposure to ampicillin, and then at three and fourteen days thereafter. During the fourteen day period of antibiotic recovery, groups of mice were fed either water, cows’ milk containing high levels of IgA, or cows’ milk containing low levels of IgA as their sole source of liquid. Effects on microbiota of feeding milks for 14 days were also assessed in groups of mice that had no ampicillin exposure. Changes in microbiota were measured by high throughput sequencing of the V4 to V6 variable regions of the 16S ribosomal RNA gene.As expected, exposure to ampicillin led to profound changes to the types and abundance of bacteria present, along with a loss of diversity. At 14 days following antibiotic exposure, mice fed water had recovered microbiota compositions similar to that prior to antibiotics. However, feeding High-IgA milk to mice that has been exposed to antibiotics was associated with altered microbiota compositions, including increased relative abundance ofLactobacillusandBarnesiellacompared to the start of the study. Mice exposed to antibiotics then fed Low-IgA milk also showed increasedBarnesiellaat day 14. Mice without antibiotic perturbation, showed no change in their microbiota after 14 days of milk feeding. Overall, these findings add to a knowledge platform for optimizing intestinal function after treatment with antibiotics in the human population.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-23
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-03-02
    Description: BackgroundMuch of the recent research in companion animal nutrition has focussed on understanding the role of diet on faecal microbiota composition. To date, diet-induced changes in faecal microbiota observed in humans and rodents have been extrapolated to pets in spite of their very different dietary and metabolic requirements. This lack of direct evidence means that the mechanisms by which microbiota influences health in dogs are poorly understood. We hypothesised that changes in faecal microbiota correlate with physiological parameters including apparent macronutrient digestibility.MethodsFifteen adult dogs were assigned to two diet groups, exclusively fed either a premium kibbled diet (kibble;K;n = 8) or a raw red meat diet (meat;M;n = 7) for nine weeks. Apparent digestibility of macronutrients (protein, fat, gross energy and dry matter), faecal weight, faecal health scores, faecal VFA concentrations and faecal microbial composition were determined. Datasets were integrated using mixOmics in R.ResultsFaecal weight and VFA levels were lower and the apparent digestibility of protein and energy were higher in dogs on the meat diet. Diet significantly affected 27 microbial families and 53 genera in the faeces. In particular, the abundances ofBacteriodes,Prevotella,PeptostreptococcusandFaecalibacteriumwere lower in dogs fed the meat diet, whereasFusobacterium,LactobacillusandClostridiumwere all more abundant.DiscussionOur results show clear associations of specific microbial taxa with diet composition. For example, Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae were highly correlated to parameters such as protein and fat digestibility in the dog. By understanding the relationship between faecal microbiota and physiological parameters we will gain better insights into the effects of diet on the nutrition of our pets.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...