ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PeerJ  (2)
  • Cambridge University Press  (1)
  • 1
    Publication Date: 2013-11-01
    Description: Characterizing scalar dispersion is a key concern in a wide variety of applications, including both steady-state and time-dependent studies of wastewater outfalls, salinity distribution in estuaries, and the spreading of pollutants from industrial spills. As the size of a scalar plume grows with respect to the size of the containing water body, the effective dispersion varies, from the well-known σ〈inf〉x〈/inf〉2 ∼ t3 behaviour for a plume enveloped in a region of linear shear, to the σ〈inf〉x〈/inf〉2 ∼ t behaviour at the limit of a laterally well-mixed plume. We introduce an additional regime in which the plume extends across the full range of the available shear, but is not significantly affected by the lateral bounds of the water body. Through an analytic treatment we show that this regime exhibits a σ〈inf〉x〈/inf〉2 ∼ t2 behaviour, independent of lateral mixing coefficient. Particle tracking results in an idealized, tidal channel-shoal basin demonstrate this regime as particle clouds straddle the channel-shoal interface. Quantitative analysis of spatial moments as plumes transition between regimes show good correlation between the observed parameters and parameters predicted by the analytic framework. ©2013 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-12
    Description: A research cruise to Hannibal Bank, a seamount and an ecological hotspot in the coastal eastern tropical Pacific Ocean off Panama, explored the zonation, biodiversity, and the ecological processes that contribute to the seamount’s elevated biomass. Here we describe the spatial structure of a benthic anomuran red crab population, using submarine video and autonomous underwater vehicle (AUV) photographs. High density aggregations and a swarm of red crabs were associated with a dense turbid layer 4–10 m above the bottom. The high density aggregations were constrained to 355–385 m water depth over the Northwest flank of the seamount, although the crabs also occurred at lower densities in shallower waters (∼280 m) and in another location of the seamount. The crab aggregations occurred in hypoxic water, with oxygen levels of 0.04 ml/l. Barcoding of Hannibal red crabs, and pelagic red crabs sampled in a mass stranding event in 2015 at a beach in San Diego, California, USA, revealed that the Panamanian and the Californian crabs are likely the same species,Pleuroncodes planipes, and these findings represent an extension of the southern endrange of this species. Measurements along a 1.6 km transect revealed three high density aggregations, with the highest density up to 78 crabs/m2, and that the crabs were patchily distributed. Crab density peaked in the middle of the patch, a density structure similar to that of swarming insects.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PeerJ 4 (2016): e1770, doi:10.7717/peerj.1770.
    Description: A research cruise to Hannibal Bank, a seamount and an ecological hotspot in the coastal eastern tropical Pacific Ocean off Panama, explored the zonation, biodiversity, and the ecological processes that contribute to the seamount’s elevated biomass. Here we describe the spatial structure of a benthic anomuran red crab population, using submarine video and autonomous underwater vehicle (AUV) photographs. High density aggregations and a swarm of red crabs were associated with a dense turbid layer 4–10 m above the bottom. The high density aggregations were constrained to 355–385 m water depth over the Northwest flank of the seamount, although the crabs also occurred at lower densities in shallower waters (∼280 m) and in another location of the seamount. The crab aggregations occurred in hypoxic water, with oxygen levels of 0.04 ml/l. Barcoding of Hannibal red crabs, and pelagic red crabs sampled in a mass stranding event in 2015 at a beach in San Diego, California, USA, revealed that the Panamanian and the Californian crabs are likely the same species, Pleuroncodes planipes, and these findings represent an extension of the southern endrange of this species. Measurements along a 1.6 km transect revealed three high density aggregations, with the highest density up to 78 crabs/m2, and that the crabs were patchily distributed. Crab density peaked in the middle of the patch, a density structure similar to that of swarming insects.
    Description: This work was sponsored by a grant from the Dalio Foundation, Inc, through the Woods Hole Oceanographic Institution.
    Keywords: Swarms ; Ecological hotspot ; Patchiness ; Panama ; Eastern Pacific ; Seamount ; Pleuroncodes planipes ; Hypoxic environment ; Anomuran crabs
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...