ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-09-01
    Description: Large-scale trends in planktonic foraminiferal diversity have so far been based on utilization of synoptic biostratigraphic range charts. Although this approach ensures the taxonomic consistency and quality of the data being used, it takes no formal account of any sampling biases that might exist in the fossil record. We demonstrate that the occurrence data of planktonic foraminifera, as recorded in the primary literature, are strongly biased by sampling. We do this by demonstrating that raw diversity curves derived from the land-based and deep-sea records are strikingly different, but that they each correlate with the intensity of sampling in their respective environments, and thus are ultimately controlled by the structure of the geological record in each setting. Because sampling of the Mesozoic record is best in our land record whereas sampling of the Cenozoic is best in our deep-sea record, we combine the two to generate the best-supported estimates of species and genus diversity over time from these data. We correct for sampling bias using shareholder quorum subsampling and a modeling approach. The data are then transformed to generate a range-through plot of species richness that is compared with two earlier estimates of the diversity history where comparable species-in-bin data can be recovered. No robust statistical correlation is found among the three estimates. Although differences in amplitude are to be expected, differences in the actual shape of the curve are surprising. We conclude that these differences stem from the nature of the data themselves, namely the taxonomic scheme adopted and the taxonomic coverage used.
    Print ISSN: 0094-8373
    Electronic ISSN: 0094-8373
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-01
    Description: The carbon stable isotope (δ13C) composition of the calcitic tests of planktonic foraminifera has an important role as a geochemical tracer of ocean carbon system changes associated with the Cretaceous/Paleogene (K/Pg) mass extinction event and its aftermath. Questions remain, however, about the extent of δ13C isotopic disequilibrium effects and the impact of depth habitat evolution on test calcite δ13C among rapidly evolving Paleocene species, and the influence this has on reconstructed surface-to-deep ocean dissolved inorganic carbon (DIC) gradients. A synthesis of new and existing multispecies data, on the relationship between δ13C and δ18O and test size, sheds light on these issues. Results suggest that early Paleocene species quickly radiated into a range of depths habitats in a thermally stratified water column. Negative δ18O gradients with increasing test size in some species of Praemurica suggest either ontogenetic or ecotypic dependence on calcification temperature that may reflect depth/light controlled variability in symbiont photosynthetic activity. The pattern of positive δ13C test-size correlations allows us to (1) identify metabolic disequilibrium δ13C effects in small foraminifera tests, as occur in the immediate aftermath of the K/Pg event, (2) constrain the timing of evolution of foraminiferal photosymbiosis to 63.5 Ma, ∼0.9 Myr earlier than previously suggested, and (3) identify the apparent loss of symbiosis in a late-ranging morphotype of Praemurica. These findings have implications for interpreting δ13C DIC gradients at a resolution appropriate for incoming highly resolved K/Pg core records.
    Print ISSN: 0094-8373
    Electronic ISSN: 0094-8373
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-01-01
    Description: The carbon stable isotope (δ13C) composition of the calcitic tests of planktonic foraminifera has an important role as a geochemical tracer of ocean carbon system changes associated with the Cretaceous/Paleogene (K/Pg) mass extinction event and its aftermath. Questions remain, however, about the extent of δ13C isotopic disequilibrium effects and the impact of depth habitat evolution on test calcite δ13C among rapidly evolving Paleocene species, and the influence this has on reconstructed surface-to-deep ocean dissolved inorganic carbon (DIC) gradients. A synthesis of new and existing multispecies data, on the relationship between δ13C and δ18O and test size, sheds light on these issues. Results suggest that early Paleocene species quickly radiated into a range of depths habitats in a thermally stratified water column. Negative δ18O gradients with increasing test size in some species ofPraemuricasuggest either ontogenetic or ecotypic dependence on calcification temperature that may reflect depth/light controlled variability in symbiont photosynthetic activity. The pattern of positive δ13C test-size correlations allows us to (1) identify metabolic disequilibrium δ13C effects in small foraminifera tests, as occur in the immediate aftermath of the K/Pg event, (2) constrain the timing of evolution of foraminiferal photosymbiosis to 63.5 Ma, ∼0.9 Myr earlier than previously suggested, and (3) identify the apparent loss of symbiosis in a late-ranging morphotype ofPraemurica. These findings have implications for interpreting δ13C DIC gradients at a resolution appropriate for incoming highly resolved K/Pg core records.
    Print ISSN: 0094-8373
    Electronic ISSN: 0094-8373
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-01-01
    Description: One of the most extensively studied aspects of phylogenetic tree shape is balance, which is the extent to which nodes divide a tree into clades of equal size. Several authors have stressed the importance of tree balance for understanding patterns of evolution. It has been remarked that paleontological studies commonly produce very unbalanced trees (also called pectinate cladograms or “Hennigian combs”). This claim is tested here by comparing the balance of 50 paleontological trees and 50 neontological trees, all taken from the recent literature. Each tree was reanalyzed from the published data matrix to ensure its accuracy. The results confirm that paleontological trees tend to be more imbalanced than neontological trees.That paleontological trees are more imbalanced has been represented as a shortcoming of fossil data sets, but here it is argued that this is the expected result. Even under a simple Markovian model in which all speciations and extinctions occur randomly and with equal probability in all parts of the tree, trees based on taxa from a single time period (e.g., the present day) are generally more balanced than trees based on all taxa that ever existed within the clade. Computer simulation is used to calculate the expected balance and standard deviation of trees for up to 40 terminal taxa over the entire history of a model clade. The balance is measured using Colless's index, Ic, and the expected balance conforms well with published paleontological trees. The study underlines the difficulty of applying neontological tree statistics in paleontology.
    Print ISSN: 0094-8373
    Electronic ISSN: 0094-8373
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-01-01
    Description: Marine planktonic microfossils have provided some of the best examples of evolutionary rates and patterns on multi-million-year time scales, including many instances of gradual evolution. Lineage splitting as a result of speciation has also been claimed, but all such studies have used subjective visual species discrimination, and interpretation has often been complicated by relatively small sample sizes and oceanographic complexity at the study sites. Here we analyze measurements on a collection of 10,200 individual tests of the Eocene planktonic foraminiferTurborotaliain 51 stratigraphically ordered samples from a site within the oceanographically stable tropical North Pacific gyre. We use novel multivariate statistical clustering methods to test the hypothesis that a single evolutionary species was present from 45 Ma to its extinction ca. 34 Ma. After identification of a set of biologically relevant traits, the protocol we apply does not require a prior assignment of individuals to species. We find that for most of the record, contemporaneous specimens form one morphological cluster, which we interpret as an evolving species that shows quasi-continuous but non-directional gradual evolutionary change (anagenesis). However, in the upper Eocene from ca. 36 to ca. 34 Ma there are two clusters that persistently occupy distinct areas of morphospace, from which we infer that speciation (cladogenesis) must have occurred.
    Print ISSN: 0094-8373
    Electronic ISSN: 0094-8373
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1992-03-01
    Description: For a survivorship curve to show a meaningful pattern, it is essential that a suitably homogeneous group is selected for analysis. If taxa have originated at different times in the geological record and have consequently experienced different extinction probabilities during the times that they existed, they do not constitute such a homogeneous group. A correction factor for variations in real-time extinction rates must be employed, as is described here. By application of the “corrected survivorship score,” it is shown that the Paleogene planktonic foraminifera exhibit a very strong survivorship pattern, namely an extinction probability that progressively increases with taxonomic longevity. That is to say, when extinction occurred, it was preferentially selective of older taxa. This is manifested as convexity in the survivorship curves. However, the pattern is degraded by variations in the real-time extinction rate, which causes straightening of the survivorship curves if they are calculated in the usual uncorrected way. If the law of constant extinction is to be tested for a given group, it is necessary either that stochastically constant real-time extinction rates are demonstrated or that variations in the extinction rate are corrected for in the manner described. As a separate issue, it is also essential that biologically meaningful taxa are analyzed. The convexity of planktonic foraminiferal survivorship curves is probably an artifact of the way evolving lineages have been subdivided in the application of typological taxonomy. Consequently, we are still a long way from being able to use survivorship analysis of planktonic foraminiferal data for adequately testing evolutionary models such as the Red Queen's hypothesis.
    Print ISSN: 0094-8373
    Electronic ISSN: 0094-8373
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-01-01
    Description: Large-scale trends in planktonic foraminiferal diversity have so far been based on utilization of synoptic biostratigraphic range charts. Although this approach ensures the taxonomic consistency and quality of the data being used, it takes no formal account of any sampling biases that might exist in the fossil record. We demonstrate that the occurrence data of planktonic foraminifera, as recorded in the primary literature, are strongly biased by sampling. We do this by demonstrating that raw diversity curves derived from the land-based and deep-sea records are strikingly different, but that they each correlate with the intensity of sampling in their respective environments, and thus are ultimately controlled by the structure of the geological record in each setting. Because sampling of the Mesozoic record is best in our land record whereas sampling of the Cenozoic is best in our deep-sea record, we combine the two to generate the best-supported estimates of species and genus diversity over time from these data. We correct for sampling bias using shareholder quorum subsampling and a modeling approach. The data are then transformed to generate a range-through plot of species richness that is compared with two earlier estimates of the diversity history where comparable species-in-bin data can be recovered. No robust statistical correlation is found among the three estimates. Although differences in amplitude are to be expected, differences in the actual shape of the curve are surprising. We conclude that these differences stem from the nature of the data themselves, namely the taxonomic scheme adopted and the taxonomic coverage used.
    Print ISSN: 0094-8373
    Electronic ISSN: 0094-8373
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-12-01
    Print ISSN: 0094-8373
    Electronic ISSN: 0094-8373
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...