ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2019-08-27
    Beschreibung: Polar lipid-derived fatty acids (PLFAs) and their stable carbon isotopes are frequently combined to characterize microbial populations involved in the degradation of organic matter, offering a link to biogeochemical processes and carbon sources used. However, PLFA patterns derive from multiple species and may be influenced by substrate types. Here, we investigated such dependencies by monitoring the transformation of position-specifically 13C-labeled amino acids (AAs) in coastal marine sediments dominated by heterotrophic bacteria. Alanine was assimilated into straight-chain FAs, while valine and leucine incorporation led to the characteristic production of even- and odd-numbered iso-series FAs. This suggests that identical microbial communities adjust lipid biosynthesis according to substrate availability. Transformation into precursor molecules for FA biosynthesis was manifested in increased 13C recoveries of the corresponding volatiles acetate, isobutyrate and isovalerate of up to 39.1%, much higher than for PLFAs (
    Print ISSN: 0168-6496
    Digitale ISSN: 1574-6941
    Thema: Biologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2020-12-14
    Beschreibung: The vertical structuring of methanotrophic communities and its genetic controllers remain understudied in the water columns of oxygen-stratified lakes. Therefore, we used 16S rRNA gene sequencing to study the vertical stratification patterns of methanotrophs in two boreal lakes, Lake Kuivajärvi and Lake Lovojärvi. Furthermore, metagenomic analyses were done to assess the genomic characteristics of methanotrophs in Lovojärvi and a previously studied Lake Alinen Mustajärvi. The methanotroph communities were vertically structured along the oxygen gradient. Alphaproteobacterial methanotrophs preferred oxic water layers, while Methylococcales methanotrophs, consisting of putative novel genera and species, thrived especially at and below the oxic-anoxic interface and showed distinct depth variation patterns, which were not completely predictable by their taxonomic classification. Instead, genomic differences among Methylococcales methanotrophs explained their variable vertical depth patterns. Genes in COG categories L (Replication, recombination and repair) and S (Function unknown) were relatively high in metagenome-assembled-genomes representing Methylococcales thriving clearly below the oxic-anoxic interface, suggesting genetic adaptations for increased stress tolerance enabling living in the hypoxic/anoxic conditions. In contrast, genes in COG category N (Cell motility) were relatively high in metagenome-assembled-genomes of Methylococcales thriving at the oxic-anoxic interface, which suggests genetic adaptations for increased motility at the vertically fluctuating oxic-anoxic interface.
    Print ISSN: 0168-6496
    Digitale ISSN: 1574-6941
    Thema: Biologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-04-21
    Beschreibung: Dissolved organic matter (DOM) in marine sediment pore waters derives largely from decomposition of particulate organic matter and its composition is influenced by various biogeochemical and oceanographic processes in yet undetermined ways. Here, we determine the molecular inventory of pore water DOM in marine sediments of contrasting depositional regimes with ultrahigh-resolution mass spectrometry and complementary bulk chemical analyses in order to elucidate the factors that shape DOM composition. Our sample sets from the Mediterranean, Marmara and Black Seas covered different sediment depths, ages and a range of marine environments with different (i) organic matter sources, (ii) balances of organic matter production and preservation, and (iii) geochemical conditions in sediment and water column including anoxic, sulfidic and hypersaline conditions. Pore water DOM had a higher molecular formula richness than overlying water with up to 11,295 vs. 2114 different molecular formulas in the mass range of 299–600 Da and covered a broader range of element ratios (H/C = 0.35–2.19, O/C = 0.03–1.19 vs. H/C = 0.56–2.13, O/C = 0.15–1.14). Formula richness was independent of concentrations of DOC and TOC. Near-surface pore water DOM was more similar to water column DOM than to deep pore water DOM from the same core with respect to formula richness and the molecular composition, suggesting exchange at the sediment–water interface. The DOM composition in the deeper sediments was controlled by organic matter source, selective decomposition of specific DOM fractions and early diagenetic molecule transformations. Compounds in pelagic sediment pore waters were predominantly highly unsaturated and N-bearing formulas, whereas oxygen-rich CHO-formulas and aromatic compounds were more abundant in pore water DOM from terrigenous sediments. The increase of S-bearing molecular formulas in the water column and pore waters of the Black Sea and the Mediterranean Discovery Basin was consistent with elevated HS- concentrations reflecting the incorporation of sulfur into biomolecules during early diagenesis. Sulfurization resulted in an increased average molecular mass of DOM and higher formula richness (up to 5899 formulas per sample). In sediments from the methanogenic zone in the Black Sea, the DOM pool was distinctly more reduced than overlying sediments from the sulfate-reducing zone. Bottom and pore water DOM from the Discovery Basin contained the highest abundances of aliphatic compounds in the entire dataset; a large fraction of abundant N-bearing formulas possibly represented peptide and nucleotide formulas suggesting preservation of these molecules in the life inhibiting environment of the Discovery Basin. Our unique data set provides the basis for a comprehensive understanding of the molecular signatures in pore water DOM and the turnover of sedimentary organic matter in marine sediments.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2021-05-26
    Beschreibung: Colonization of newly ice-free areas by marine benthic organisms intensifies burial of macroalgae detritus in Potter Cove coastal surface sediments (Western Antarctic Peninsula). Thus, fresh and labile macroalgal detritus serves as primary organic matter (OM) source for microbial degradation. Here, we investigated the effects on post-depositional microbial iron reduction in Potter Cove using sediment incubations amended with pulverized macroalgal detritus as OM source, acetate as primary product of OM degradation and lepidocrocite as reactive iron oxide to mimic in situ conditions. Humic substances analogue anthraquinone-2,6-disulfonic acid (AQDS) was also added to some treatments to simulate potential for electron shuttling. Microbial iron reduction was promoted by macroalgae and further enhanced by up to 30-folds with AQDS. Notably, while acetate amendment alone did not stimulate iron reduction, adding macroalgae alone did. Acetate, formate, lactate, butyrate and propionate were detected as fermentation products from macroalgae degradation. By combining 16S rRNA gene sequencing and RNA stable isotope probing, we reconstructed the potential microbial food chain from macroalgae degraders to iron reducers. Psychromonas, Marinifilum, Moritella, and Colwellia were detected as potential fermenters of macroalgae and fermentation products such as lactate. Members of class deltaproteobacteria including Sva1033, Desulfuromonas, and Desulfuromusa together with Arcobacter (former phylum Epsilonbacteraeota, now Campylobacterota) acted as dissimilatory iron reducers. Our findings demonstrate that increasing burial of macroalgal detritus in an Antarctic fjord affected by glacier retreat intensifies early diagenetic processes such as iron reduction. Under scenarios of global warming, the active microbial populations identified above will expand their environmental function, facilitate OM remineralisation, and contribute to an increased release of iron and CO2 from sediments. Such indirect consequences of glacial retreat are often overlooked but might, on a regional scale, be relevant for the assessment of future nutrient and carbon fluxes.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...