ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (11,076)
Collection
Keywords
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bertler, Nancy A; Conway, Howard; Dahl-Jensen, Dorthe; Emanuelsson, Urban; Winstrup, Mai; Vallelonga, Paul T; Lee, James E; Brook, Edward J; Severinghaus, Jeffrey P; Fudge, Tyler J; Keller, Elizabeth D; Baisden, W Troy; Hindmarsh, Richard C A; Neff, Peter D; Blunier, Thomas; Edwards, Ross L; Mayewski, Paul Andrew; Kipfstuhl, Sepp; Buizert, Christo; Canessa, Silvia; Dadic, Ruzica; Kjær, Helle Astrid; Kurbatov, Andrei; Zhang, Dongqi; Waddington, Edwin D; Baccolo, Giovanni; Beers, Thomas; Brightley, Hannah J; Carter, Lionel; Clemens-Sewall, David; Ciobanu, Viorela G; Delmonte, Barbara; Eling, Lukas; Ellis, Aja A; Ganesh, Shruthi; Golledge, Nicholas R; Haines, Skylar A; Handley, Michael; Hawley, Robert L; Hogan, Chad M; Johnson, Katelyn M; Korotkikh, Elena; Lowry, Daniel P; Mandeno, Darcy; McKay, Robert M; Menking, James A; Naish, Timothy R; Noerling, Caroline; Ollive, Agathe; Orsi, Anais J; Proemse, Bernadette C; Pyne, Alexander R; Pyne, Rebecca L; Renwick, James; Scherer, Reed P; Semper, Stefanie; Simonsen, Marius; Sneed, Sharon B; Steig, Eric J; Tuohy, Andrea; Ulayottil Venugopal, Abhijith; Valero Delgado, Fernando; Venkatesh, Janani; Wang, Feitang; Wang, Shimeng; Winski, Dominic A; Winton, Victoria H L; Whiteford, Arran; Xiao, Cunde; Yang, Jiao; Zhang, Xin (2018): The Ross Sea dipole - temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years. Climate of the Past, 14, 193-214, https://doi.org/10.5194/cp-14-193-2018
    Publication Date: 2024-03-18
    Description: High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually-dated ice core record from the eastern Ross Sea. Comparison of the Roosevelt Island Climate Evolution (RICE) ice core records with climate reanalysis data for the 1979-2012 calibration period shows that RICE records reliably capture temperature and snow precipitation variability of the region. RICE is compared with data from West Antarctica (West Antarctic Ice Sheet Divide Ice Core) and the western (Talos Dome) and eastern (Siple Dome) Ross Sea. For most of the past 2,700 years, the eastern Ross Sea was warming with perhaps increased snow accumulation and decreased sea ice extent. However, West Antarctica cooled whereas the western Ross Sea showed no significant temperature trend. From the 17th Century onwards, this relationship changes. All three regions now show signs of warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea, but increasing in the western Ross Sea. Analysis of decadal to centennial-scale climate variability superimposed on the longer term trend reveal that periods characterised by opposing temperature trends between the Eastern and Western Ross Sea have occurred since the 3rd Century but are masked by longer-term trends. This pattern here is referred to as the Ross Sea Dipole, caused by a sensitive response of the region to dynamic interactions of the Southern Annual Mode and tropical forcings.
    Keywords: AGE; Age, maximum/old; Age, minimum/young; DEPTH, ice/snow; ICEDRILL; Ice drill; Isotope ratio mass spectrometry; RICE; Roosevelt Island, Antarctica; δ Deuterium
    Type: Dataset
    Format: text/tab-separated-values, 8136 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Allan, James R; Watson, James E M; Di Marco, Moreno; O'Bryan, Christopher J; Possingham, Hugh P; Atkinson, Scott C; Venter, Oscar (2019): Hotspots of human impact on threatened terrestrial vertebrates. PLoS Biology, https://doi.org/10.1371/journal.pbio.3000158
    Publication Date: 2023-03-11
    Description: Conserving threatened species requires identifying where across their range they are being impacted by threats, yet this remains unresolved across most of Earth. Here we present a global analysis of cumulative human impacts on threatened species by using a spatial framework that jointly considers the co-occurrence of eight threatening processes and the distribution of 5,457 terrestrial vertebrates. We show that impacts to species are widespread, occurring across 84% of Earth's surface, and identify hotspots of impacted species richness, and coolspots of unimpacted species richness. Almost one quarter of assessed species are impacted across 〉 90% of their distribution, and ~7% are impacted across their entire range. These results foreshadow localized extirpations, and potential extinctions, without conservation action. The spatial framework developed here offers a tool for defining strategies to directly mitigate the threats driving species declines, providing essential information for future national and global conservation agendas.
    Keywords: File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 16 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Miller, Kenneth G; Browning, James V; Aubry, Marie-Pierre; Wade, Bridget S; Katz, Miriam E; Kulpecz, Andrew A; Wright, James D (2008): Eocene-Oligocene global climate and sea-level changes: St. Stephens Quarry, Alabama. Geological Society of America Bulletin, 120(1/2), 34-53, https://doi.org/10.1130/B26105.1
    Publication Date: 2023-05-12
    Description: We integrate upper Eocene-lower Oligocene lithostratigraphic, magnetostratigraphic, biostratigraphic, stable isotopic, benthic foraminiferal faunal, downhole log, and sequence stratigraphic studies from the Alabama St. Stephens Quarry (SSQ) core hole, linking global ice volume, sea level, and temperature changes through the greenhouse to icehouse transition of the Cenozoic. We show that the SSQ succession is dissected by hiatuses associated with sequence boundaries. Three previously reported sequence boundaries are well dated here: North Twistwood Creek-Cocoa (35.4-35.9 Ma), Mint Spring-Red Bluff (33.0 Ma), and Bucatunna-Chickasawhay (the mid-Oligocene fall, ca. 30.2 Ma). In addition, we document three previously undetected or controversial sequences: mid-Pachuta (33.9-35.0 Ma), Shubuta-Bumpnose (lowermost Oligocene, ca. 33.6 Ma), and Byram-Glendon (30.5-31.7 Ma). An ~0.9 per mil d18O increase in the SSQ core hole is correlated to the global earliest Oligocene (Oi1) event using magnetobiostratigraphy; this increase is associated with the Shubuta-Bumpnose contact, an erosional surface, and a biofacies shift in the core hole, providing a first-order correlation between ice growth and a sequence boundary that indicates a sea-level fall. The d18O increase is associated with a eustatic fall of ~55 m, indicating that ~0.4 per mil of the increase at Oi1 time was due to temperature. Maximum d18O values of Oi1 occur above the sequence boundary, requiring that deposition resumed during the lowest eustatic lowstand. A precursor d18O increase of 0.5 per mil (33.8 Ma, midchron C13r) at SSQ correlates with a 0.5 per mil increase in the deep Pacific Ocean; the lack of evidence for a sea-level change with the precursor suggests that this was primarily a cooling event, not an ice-volume event. Eocene-Oligocene shelf water temperatures of ~17-19 °C at SSQ are similar to modern values for 100 m water depth in this region. Our study establishes the relationships among ice volume, d18O, and sequences: a latest Eocene cooling event was followed by an earliest Oligocene ice volume and cooling event that lowered sea level and formed a sequence boundary during the early stages of eustatic fall.
    Keywords: Alabama, Alabama, U.S.A., North America; DRILL; Drilling/drill rig; SSQ; St-Stephens-Quarry
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Butler, Paul G; Scourse, James D; Richardson, Christopher A; Wanamaker, Alan D; Bryant, Charlotte L; Bennell, James (2009): Continuous marine radiocarbon reservoir calibration and the 13C Suess effect in the Irish Sea: Results from the first multi-centennial shell-based marine master chronology. Earth and Planetary Science Letters, 279(3-4), 230-241, https://doi.org/10.1016/j.epsl.2008.12.043
    Publication Date: 2023-05-12
    Description: The identification in various proxy records of periods of rapid (decadal scale) climate change over recent millennia, together with the possibility that feedback mechanisms may amplify climate system responses to increasing atmospheric CO2, highlights the importance of a detailed understanding, at high spatial and temporal resolutions, of forcings and feedbacks within the system. Such an understanding has hitherto been limited because the temperate marine environment has lacked an absolute timescale of the kind provided by tree-rings for the terrestrial environment and by corals for the tropical marine environment. Here we present the first annually resolved, multi-centennial (489-year), absolutely dated, shell-based marine master chronology. The chronology has been constructed by detrending and averaging annual growth increment widths in the shells of multiple specimens of the very long-lived bivalve mollusc Arctica islandica, collected from sites to the south and west of the Isle of Man in the Irish Sea. The strength of the common environmental signal expressed in the chronology is fully comparable with equivalent statistics for tree-ring chronologies. Analysis of the 14C signal in the shells shows no trend in the marine radiocarbon reservoir correction (DR), although it may be more variable before ~1750. The d13C signal shows a very significant (R**2 = 0.456, p 〈 0.0001) trend due to the 13C Suess effect.
    Keywords: Dredge; DRG; Irish Sea; Isle_of_Man
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Butler, Paul G; Richardson, Christopher A; Scourse, James D; Wanamaker, Alan D; Shammon, Theresa M; Bennell, James (2010): Marine climate in the Irish Sea: analysis of a 489-year marine master chronology derived from growth increments in the shell of the clam Arctica islandica. Quaternary Science Reviews, 29(13-14), 1614-1632, https://doi.org/10.1016/j.quascirev.2009.07.010
    Publication Date: 2023-05-12
    Description: We demonstrate here that the growth increment variability in the shell of the long-lived bivalve mollusc Arctica islandica can be interpreted as an indicator of marine environmental change in the climatically important North Atlantic shelf seas. Multi-centennial (up to 489-year) chronologies were constructed using five detrending techniques and their characteristics compared. The strength of the common environmental signal expressed in the chronologies was found to be fully comparable with equivalent statistics for tree-ring chronologies. The negative exponential function using truncated increment-width series from which the first thirty years have been removed was chosen as the optimal detrending technique. Chronology indices were compared with the Central England Temperature record and with seawater temperature records from stations close to the study site in the Irish Sea. Statistically significant correlations were found between the chronology indices and (a) mean air temperature for the 14-month period beginning in the January preceding the year of growth, (b) mean seawater temperatures for February-October in the year preceding the year of growth (c) late summer and autumn air temperatures and sea surface temperatures for the year of growth and (d) the timing of the autumn decline in SST. Changes through time in the correlations with air and seawater temperatures and changes towards a deeper water origin for the shells in the chronology were interpreted as an indication that shell growth may respond to stratification dynamics.
    Keywords: Dredge; DRG; Irish Sea; Isle_of_Man
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-07
    Description: The data comprise meters composite depth (mcd) versus volume susceptibility (x10-3 SI) and anhysteretic susceptibility from Integrated Ocean Drilling Program (IODP) Site U1306 drilled on the crest of the Eirik Drift (SW Greenland) in 2272 m water depth. The anhysteretic magnetization (ARM) was measured on a pass-through u-channel magnetometer and the volume susceptibilities were measured on a pass-through (u-channel) susceptibility bridge (see Channell et al., 2014). Planktic oxygen isotope (δ18O) and relative paleointensity (RPI) data are used in tandem to generate an age model for the last 1 Myr from Integrated Ocean Drilling Program (IODP) Site U1306 drilled on the crest of the Eirik Drift (SW Greenland) in 2272 m water depth. For the 1-1.5 Ma interval, the age model is based on RPI alone due to insufficient foraminifera for isotope analyses. Utilizing RPI and δ18O in tandem allows recognition of low-δ18O "events" prior to glacial Terminations I, III, IV, V, VII, VIII, IX and X, that are independently supported by radiocarbon dates through the last deglaciation, and are attributed to local or regional surface-water effects. At Site U1306, Quaternary sedimentation rates (mean ~15 cm/kyr) are elevated during peak glacials and glacial onsets, and are reduced during interglacials, in contrast to the pattern at Site U1305 in 3460 m water depth at the distal toe of the drift, 191 km SW of Site U1306. The contrasting sedimentation-rate pattern appears to hold for the entire ~1.5 Myr record. The slackening and/or shoaling (due to lowered salinity) of the Deep Western Boundary Current (DWBC) during glacial intervals coincided with greater sediment supply to Site U1306 whereas the deepening, and possibly increased vigor, of the DWBC during interglacial intervals boosted sediment supply to Site U1305.
    Keywords: 303-U1306; Anhysteretic susceptibility/magnetic susceptibility; COMPCORE; Composite Core; Deep Western Boundary Current; DEPTH, sediment/rock; Eirik Drift; Exp303; Joides Resolution; Magnetic susceptibility, volume; North Atlantic; North Atlantic Climate 1; Northwest Atlantic; Oxygen isotopes; Quaternary; relative paleointensity; see Channell et al. (2014)
    Type: Dataset
    Format: text/tab-separated-values, 40746 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-07
    Description: The data comprise meters composite depth (mcd) versus a relative paleointensity (RPI) proxy from Integrated Ocean Drilling Program (IODP) Site U1306 drilled on the crest of the Eirik Drift (SW Greenland) in 2272 m water depth. The RPI proxy is natural remanent magnetization (NRM) normalized by anhysteretic remanent magnetization (ARM). The NRM/ARM paleointensity proxy was calculated as a slope over the 20-60 mT peak field demagnetization range. Also listed are the correlation coefficients (r) representing the definition of the slopes. NRM and ARM were measured on a pass-through u-channel magnetometer (see Channell et al., 2014). Planktic oxygen isotope (δ18O) and RPI data are used in tandem to generate an age model for the last 1 Myr from Integrated Ocean Drilling Program (IODP) Site U1306 drilled on the crest of the Eirik Drift (SW Greenland) in 2272 m water depth. For the 1-1.5 Ma interval, the age model is based on RPI alone due to insufficient foraminifera for isotope analyses. Utilizing RPI and δ18O in tandem allows recognition of low-δ18O "events" prior to glacial Terminations I, III, IV, V, VII, VIII, IX and X, that are independently supported by radiocarbon dates through the last deglaciation, and are attributed to local or regional surface-water effects. At Site U1306, Quaternary sedimentation rates (mean ~15 cm/kyr) are elevated during peak glacials and glacial onsets, and are reduced during interglacials, in contrast to the pattern at Site U1305 in 3460 m water depth at the distal toe of the drift, 191 km SW of Site U1306. The contrasting sedimentation-rate pattern appears to hold for the entire ~1.5 Myr record. The slackening and/or shoaling (due to lowered salinity) of the Deep Western Boundary Current (DWBC) during glacial intervals coincided with greater sediment supply to Site U1306 whereas the deepening, and possibly increased vigor, of the DWBC during interglacial intervals boosted sediment supply to Site U1305.
    Keywords: 303-U1306; Calculated; COMPCORE; Composite Core; Correlation coefficient; Deep Western Boundary Current; DEPTH, sediment/rock; Eirik Drift; Exp303; Joides Resolution; Natural remanent magnetization/anhysteretic remanent magnetization ratio; North Atlantic; North Atlantic Climate 1; Northwest Atlantic; Oxygen isotopes; Quaternary; relative paleointensity; see Channell et al. (2014)
    Type: Dataset
    Format: text/tab-separated-values, 40746 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-07
    Description: The data comprise meters composite depth (mcd) versus component declination, inclination and maximum angular deviation (MAD) values for natural remanent magnetization (NRM) from Integrated Ocean Drilling Program (IODP) Site U1306 drilled on the crest of the Eirik Drift (SW Greenland) in 2272 m water depth. The component magnetizations were determined from stepwise alternating field demagnetization of NRM and measured on a pass-through u-channel magnetometer (see Channell et al., 2014). Planktic oxygen isotope (δ18O) and relative paleointensity (RPI) data are used in tandem to generate an age model for the last 1 Myr. For the 1-1.5 Ma interval, the age model is based on RPI alone due to insufficient foraminifera for isotope analyses. Utilizing RPI and δ18O in tandem allows recognition of low-δ18O "events" prior to glacial Terminations I, III, IV, V, VII, VIII, IX and X, that are independently supported by radiocarbon dates through the last deglaciation, and are attributed to local or regional surface-water effects. At Site U1306, Quaternary sedimentation rates (mean ~15 cm/kyr) are elevated during peak glacials and glacial onsets, and are reduced during interglacials, in contrast to the pattern at Site U1305 in 3460 m water depth at the distal toe of the drift, 191 km SW of Site U1306. The contrasting sedimentation-rate pattern appears to hold for the entire ~1.5 Myr record. The slackening and/or shoaling (due to lowered salinity) of the Deep Western Boundary Current (DWBC) during glacial intervals coincided with greater sediment supply to Site U1306 whereas the deepening, and possibly increased vigor, of the DWBC during interglacial intervals boosted sediment supply to Site U1305.
    Keywords: 303-U1306; COMPCORE; Composite Core; Declination; Deep Western Boundary Current; DEPTH, sediment/rock; Eirik Drift; Exp303; Inclination; Joides Resolution; Maximum angular deviation; North Atlantic; North Atlantic Climate 1; Northwest Atlantic; Oxygen isotopes; Quaternary; relative paleointensity; see Channell et al. (2014)
    Type: Dataset
    Format: text/tab-separated-values, 61119 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-12
    Description: The data comprise meters composite depth (mcd) versus oxygen isotope measurements on Neogloboquadrina pachyderma from Integrated Ocean Drilling Program (IODP) Site U130 using a Fisons Optima mass spectrometer at Rutgers University (see Channell et al., 2014). Planktic oxygen isotope (δ18O) and relative paleointensity (RPI) data are used in tandem to generate an age model for the last 1 Myr from Integrated Ocean Drilling Program (IODP) Site U1306 drilled on the crest of the Eirik Drift (SW Greenland) in 2272 m water depth. For the 1-1.5 Ma interval, the age model is based on RPI alone due to insufficient foraminifera for isotope analyses. Utilizing RPI and δ18O in tandem allows recognition of low-δ18O "events" prior to glacial Terminations I, III, IV, V, VII, VIII, IX and X, that are independently supported by radiocarbon dates through the last deglaciation, and are attributed to local or regional surface-water effects. At Site U1306, Quaternary sedimentation rates (mean ~15 cm/kyr) are elevated during peak glacials and glacial onsets, and are reduced during interglacials, in contrast to the pattern at Site U1305 in 3460 m water depth at the distal toe of the drift, 191 km SW of Site U1306. The contrasting sedimentation-rate pattern appears to hold for the entire ~1.5 Myr record. The slackening and/or shoaling (due to lowered salinity) of the Deep Western Boundary Current (DWBC) during glacial intervals coincided with greater sediment supply to Site U1306 whereas the deepening, and possibly increased vigor, of the DWBC during interglacial intervals boosted sediment supply to Site U1305.
    Keywords: 303-U1306; COMPCORE; Composite Core; Deep Western Boundary Current; DEPTH, sediment/rock; Eirik Drift; Exp303; Joides Resolution; Mass spectrometer Fisons Optima; Neogloboquadrina pachyderma, δ18O; North Atlantic; North Atlantic Climate 1; Northwest Atlantic; Oxygen isotopes; Quaternary; relative paleointensity
    Type: Dataset
    Format: text/tab-separated-values, 2710 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-03-29
    Description: Tap waters were collected from major metropolitan areas of the western United States. Tap waters were sampled between 2012-2015 from seven metropolitan areas: Los Angeles-Long Beach-Santa Ana (CA), Phoenix-Mesa-Glendale (AZ), Salt Lake City (UT), San Diego-Carlsbad-San Marcos (CA), San Francisco-Oakland-Fremont (CA), San Jose-Sunnyvale-Santa Clara (CA), and Riverside-San Bernardino-Ontario (CA). These areas represent some of the most populous in the US and employ a diversity of water management practices. Here hydrogen (d2H) and oxygen (d18O) isotope values along with strontium isotope ratios (87Sr/86Sr) and element abundances were measured. d2H and d18O of 2039 tap waters were measured following Tipple et al., 2017 (Water Research, 119, 212-224). 87Sr/86Sr and elemental compositions of 820 and 806 waters were analyzed following Tipple et al., 2018 (Scientific Reports, 8, 2224), respectively. The purpose of these data was to assess spatial, temporal, and climatic dynamics in isotope and elemental geochemistry of tap waters. We found that the isotope and elemental geochemistry of tap waters corresponded to the water sources (e.g., transported water, local surface water, groundwater, etc.) and management practices (e.g., storage in open reservoirs, mixing, etc.) for discrete areas within the larger metropolitan areas.
    Keywords: drought; elemental composition; hydrogen; hydrology; Oxygen; Strontium
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...