ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (56)
  • Copernicus  (4)
Collection
Keywords
  • 1
    Publication Date: 2019-03-12
    Description: The ice–substrate interface is an important boundary condition for ice sheet modelling. The substrate affects the ice sheet by allowing sliding through sediment deformation and accommodating the storage and drainage of subglacial water. We present three datasets on a 1 : 5 000 000 scale with different geological parameters for the region that was covered by the ice sheets in North America, including Greenland and Iceland. The first dataset includes the distribution of surficial sediments, which is separated into continuous, discontinuous and predominantly rock categories. The second dataset includes sediment grain size properties, which is divided into three classes: clay, silt and sand, based on the dominant grain size of the fine fraction of the glacial sediments. The third dataset is the generalized bedrock geology. We demonstrate the utility of these datasets for governing ice sheet dynamics by using an ice sheet model with a simulation that extends through the last glacial cycle. In order to demonstrate the importance of the basal boundary conditions for ice sheet modelling, we changed the shear friction angle to account for a weaker substrate and found changes up to 40 % in ice thickness compared to a reference run. Although incorporation of the ice–bed boundary remains model dependent, our dataset provides an observational baseline for improving a critical weakness in current ice sheet modelling (https://doi.org/10.1594/PANGAEA.895889, Gowan et al., 2018b).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-22
    Description: The ice-substrate interface is an important boundary condition for ice sheet modelling. The substrate affects the ice sheet by allowing sliding through sediment deformation and accommodating the storage and drainage of subglacial water. We present three datasets with different geological parameters for the region that was covered by the ice sheets in North America, including Greenland and Iceland. The first dataset includes the distribution surficial sediments, which is separated into continuous, discontinuous and predominantly rock categories. The second dataset includes sediment grain size properties, which is divided into three classes: clay, silt and sand, based on the dominant grain size of the glacial sediments. The third dataset is the generalized bedrock geology. We demonstrate the utility of these datasets for governing ice sheet dynamics by using an ice sheet model with a simulation that extends through the last glacial cycle. Changes in ice thickness by up to 40 % relative to a reference simulation happened when the shear friction angle was reduced to account for a weaker substrate. These datasets provide a basis to improve the basal boundary conditions in ice sheet models. Gowan, E. J., Niu, L., Knorr, G., and Lohmann, G., 2018. Geology datasets of North America for use with ice sheet models, link to datafiles. PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.895889
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-20
    Description: We present the Alfred Wegener Institute's contribution to the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) wherein we employ the Community Earth System Models (COSMOS) that include a dynamic vegetation scheme. This work builds on our contribution to Phase 1 of the Pliocene Model Intercomparison Project (PlioMIP1) wherein we employed the same model without dynamic vegetation. Our input to the PlioMIP2 special issue of Climate of the Past is twofold. In an accompanying paper we compare results derived with COSMOS in the framework of PlioMIP2 and PlioMIP1. With this paper we present details of our contribution with COSMOS to PlioMIP2. We provide a description of the model and of methods employed to transfer reconstructed mid-Pliocene geography, as provided by the Pliocene Reconstruction and Synoptic Mapping Initiative Phase 4 (PRISM4), to model boundary conditions. We describe the spin-up procedure for creating the COSMOS PlioMIP2 simulation ensemble and present large-scale climate patterns of the COSMOS PlioMIP2 mid-Pliocene core simulation. Furthermore, we quantify the contribution of individual components of PRISM4 boundary conditions to characteristics of simulated mid-Pliocene climate and discuss implications for anthropogenic warming. When exposed to PRISM4 boundary conditions, COSMOS provides insight into a mid-Pliocene climate that is characterised by increased rainfall (+0.17 mm d−1) and elevated surface temperature (+3.37 ∘C) in comparison to the pre-industrial (PI). About two-thirds of the mid-Pliocene core temperature anomaly can be directly attributed to carbon dioxide that is elevated with respect to PI. The contribution of topography and ice sheets to mid-Pliocene warmth is much smaller in contrast – about one-quarter and one-eighth, respectively, and nonlinearities are negligible. The simulated mid-Pliocene climate comprises pronounced polar amplification, a reduced meridional temperature gradient, a northwards-shifted tropical rain belt, an Arctic Ocean that is nearly free of sea ice during boreal summer, and muted seasonality at Northern Hemisphere high latitudes. Simulated mid-Pliocene precipitation patterns are defined by both carbon dioxide and PRISM4 paleogeography. Our COSMOS simulations confirm long-standing characteristics of the mid-Pliocene Earth system, among these increased meridional volume transport in the Atlantic Ocean, an extended and intensified equatorial warm pool, and pronounced poleward expansion of vegetation cover. By means of a comparison of our results to a reconstruction of the sea surface temperature (SST) of the mid-Pliocene we find that COSMOS reproduces reconstructed SST best if exposed to a carbon dioxide concentration of 400 ppmv. In the Atlantic to Arctic Ocean the simulated mid-Pliocene core climate state is too cold in comparison to the SST reconstruction. The discord can be mitigated to some extent by increasing carbon dioxide that causes increased mismatch between the model and reconstruction in other regions.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-03-16
    Description: Herein, we publish the simulated global annual mean temperature (THO), salinity (SAO), ice compactness (SICOMO), Atlantic Meridional Overturning Circulation (AMOC), Global Meridional Overturning Circulation (GMOC), zonal velocity (UKO), meridional velocity (VKE), 10m u-velocity (u10), 10m v-velocity (v10), mixed layer depth (zmld), horizontal barotropic streamfunction (PSIUWE) and sealevel (ZO) over a time period of 100 years retrieved from equilibrium climate simulations for the Miocene (~23-15 Ma) and use different Greenland-Scotland Ridge (GSR) and Fram Strait (FS) sill depths as a representative for different tectonic settings that occur during the subsidence interval and utilized in the publication by Hossain et al. (2020). The climate data has been produced with COSMOS (ECHAM5/JSBACH/MPIOM/OASIS3), utilized at a resolution of T31 in the atmosphere (19 hybrid sigma-pressure levels) and a resolution of GR30 (bipolar orthogonal curvilinear grid, formal resolution of ~3.0°x1.8°) in the ocean (40 z-coordinate levels). The model setup refers to boundary conditions (incl. changes in orography, bathymetry, physical land surface characteristics, ice sheets, atmospheric CO2) representative for the Miocene. Details on setup and identifiers of Miocene model simulations can be found in Table 1 and Supplementary Table 1 of Hossain et al., 2020.
    Keywords: AWI_PaleoClimate; Fram Strait; Greenland-Scotland Ridge; Miocene; Paleo-climate Dynamics @ AWI; Thermohaline Fingerprints
    Type: Dataset
    Format: application/zip, 290.7 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Knorr, Gregor; Lohmann, Gerrit (2014): Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition. Nature Geoscience, 7(5), 376-381, https://doi.org/10.1038/ngeo2119
    Publication Date: 2023-03-16
    Description: During the Middle Miocene climate transition about 14 million years ago, the Antarctic ice sheet expanded to near-modern volume. Surprisingly, this ice sheet growth was accompanied by a warming in the surface waters of the Southern Ocean, whereas a slight deep-water temperature increase was delayed by more than 200 thousand years. Here we use a coupled atmosphere-ocean model to assess the relative effects of changes in atmospheric CO2 concentration and ice sheet growth on regional and global temperatures. In the simulations, changes in the wind field associated with the growth of the ice sheet induce changes in ocean circulation, deep-water formation and sea-ice cover that result in sea surface warming and deep-water cooling in large swaths of the Atlantic and Indian ocean sectors of the Southern Ocean. We interpret these changes as the dominant ocean surface response to a 100-thousand-year phase of massive ice growth in Antarctica. A rise in global annual mean temperatures is also seen in response to increased Antarctic ice surface elevation. In contrast, the longer-term surface and deep-water temperature trends are dominated by changes in atmospheric CO2 concentration. We therefore conclude that the climatic and oceanographic impacts of the Miocene expansion of the Antarctic ice sheet are governed by a complex interplay between wind field, ocean circulation and the sea-ice system.
    Keywords: AWI_PaleoClimate; File content; File name; File size; Paleo-climate Dynamics @ AWI; Uniform resource locator/link to model result file
    Type: Dataset
    Format: text/tab-separated-values, 8 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stärz, Michael; Jokat, Wilfried; Knorr, Gregor; Lohmann, Gerrit (2017): Threshold in North Atlantic-Arctic Ocean circulation controlled by the subsidence of the Greenland-Scotland Ridge. Nature Communications, 8(15681), 1-13, https://doi.org/10.1038/ncomms15681
    Publication Date: 2023-03-10
    Description: Herein, we publish the simulated global annual mean surface air temperatures (tsurf), zonal (UKO) and meridional (VKE) velocities, temperature (THO), salinity (SAO) and horizontal barotropic streamfunction (PSIUWE) over a time period of 100 years retrieved from equilibrium climate simulations for testing the sensitivity of the Greenland-Scotland Ridge and utilized in the publication by Stärz et al. (2017). The climate data has been produced with COSMOS (ECHAM5/JSBACH/MPIOM/OASIS3), utilized at a resolution of T31 in the atmosphere (19 hybrid sigma-pressure levels) and a resolution of GR30 (bipolar orthogonal curvilinear grid, formal resolution of ~3.0°x1.8°) in the ocean (40 z-coordinate levels). The model setup refers to boundary conditions (incl. changes in orography, bathymetry, physical land surface characteristics, ice sheets, atmospheric CO2) representative for the Miocene. Further information on the model setup and the model scenarios, including identifiers, is given in the Supplementary Table 1 of Stärz et al. (2017).
    Keywords: File content; File format; File name; File size; Greenland-Scotland_Ridge; GSR; South Atlantic Ocean; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 170 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-02
    Keywords: Age, comment; Age, error; Age, maximum/old; Age, minimum/young; Age model; CALYPSO; Calypso Corer; Comment; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Marion Dufresne (1995); MD02-2588; MD02-2588Q; MD128; Southern Ocean; SWAF
    Type: Dataset
    Format: text/tab-separated-values, 120 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Abelmann, Andrea; Gersonde, Rainer; Knorr, Gregor; Zhang, Xu; Chapligin, Bernhard; Maier, Edith; Esper, Oliver; Friedrichsen, Hans; Lohmann, Gerrit; Meyer, Hanno; Tiedemann, Ralf (2015): The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink. Nature Communications, 6, 8136, https://doi.org/10.1038/ncomms9136
    Publication Date: 2023-03-30
    Description: Reduced surface-deep ocean exchange and enhanced nutrient consumption by phytoplankton in the Southern Ocean have been linked to lower glacial atmospheric CO2. However, identification of the biological and physical conditions involved and the related processes remains incomplete. Here we specify Southern Ocean surface-subsurface contrasts using a new tool, the combined oxygen and silicon isotope measurement of diatom and radiolarian opal, in combination with numerical simulations. Our data do not indicate a permanent glacial halocline related to melt water from icebergs. Corroborated by numerical simulations, we find that glacial surface stratification was variable and linked to seasonal sea-ice changes. During glacial spring-summer, the mixed layer was relatively shallow, while deeper mixing occurred during fall-winter, allowing for surface-ocean refueling with nutrients from the deep reservoir, which was potentially richer in nutrients than today. This generated specific carbon and opal export regimes turning the glacial seasonal sea-ice zone into a carbon sink.
    Keywords: AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI
    Type: Dataset
    Format: application/zip, 12 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-03-30
    Keywords: Actinomma antarctica; ANT-IX/4; Atlantic Ridge; AWI_Paleo; Depth, bottom/max; Depth, top/min; DEPTH, water; Discovery Seamount; Event label; MSN; Multiple opening/closing net; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS18; PS18/259; PS18/261; PS18/263; PS18/265; PS2101-2; PS2103-3; PS2105-4; PS2107-2; Spongotrochus glacialis
    Type: Dataset
    Format: text/tab-separated-values, 59 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Marino, Gianluca; Zahn, Rainer; Ziegler, Martin; Purcell, Conor; Knorr, Gregor; Hall, Ian R; Ziveri, Patrizia; Elderfield, Henry (2013): Agulhas salt-leakage oscillations during abrupt climate changes of the Late Pleistocene. Paleoceanography, 28(3), 599-606, https://doi.org/10.1002/palo.20038
    Publication Date: 2023-01-13
    Description: An ensemble of new, high-resolution records of surface ocean hydrography from the Indian-Atlantic oceanic gateway, south of Africa, demonstrates recurrent and high-amplitude salinity oscillations in the Agulhas Leakage area during the penultimate glacial-interglacial cycle. A series of millennial-scale salinification events, indicating strengthened salt leakage into the South Atlantic, appear to correlate with abrupt changes in the North Atlantic climate and Atlantic Meridional Overturning Circulation (AMOC). This interhemispheric coupling, which plausibly involved changes in the Hadley Cell and midlatitude westerlies that impacted the interocean transport at the tip of Africa, suggests that the Agulhas Leakage acted as a source of negative buoyancy for the perturbed AMOC, possibly aiding its return to full strength. Our finding points to the Indian-to-Atlantic salt transport as a potentially important modulator of the AMOC during the abrupt climate changes of the Late Pleistocene.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...