ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Toomey, Michael R; Woodruff, Jonathan D; Donnelly, Jeffrey P; Ashton, Andrew D; Perron, J Taylor (2016): Seismic evidence of glacial-age river incision into the Tahaa barrier reef, French Polynesia. Marine Geology, 380, 284-289, https://doi.org/10.1016/j.margeo.2016.04.008
    Publication Date: 2023-02-08
    Description: Rivers have long been recognized for their ability to shape reef-bound volcanic islands. On the time-scale of glacial?interglacial sea-level cycles, fluvial incision of exposed barrier reef lagoons may compete with constructional coral growth to shape the coastal geomorphology of ocean islands. However, overprinting of Pleistocene landscapes by Holocene erosion or sedimentation has largely obscured the role lowstand river incision may have played in developing the deep lagoons typical of modern barrier reefs. Here we use high-resolution seismic imagery and core stratigraphy to examine how erosion and/or deposition by upland drainage networks has shaped coastal morphology on Tahaa, a barrier reef-bound island located along the Society Islands hotspot chain in French Polynesia. At Tahaa, we find that many channels, incised into the lagoon floor during Pleistocene sea-level lowstands, are located near the mouths of upstream terrestrial drainages. Steeper antecedent topography appears to have enhanced lowstand fluvial erosion along Tahaa's southwestern coast and maintained a deep pass. During highstands, upland drainages appear to contribute little sediment to refilling accommodation space in the lagoon. Rather, the flushing of fine carbonate sediment out of incised fluvial channels by storms and currents appears to have limited lagoonal infilling and further reinforced development of deep barrier reef lagoons during periods of highstand submersion.
    Keywords: Age, 14C AMS; Age, dated; Age, dated material; Age, dated standard error; CDRILL; Core drilling; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Event label; French Polynesia; Latitude of event; Longitude of event; TAH_VC8; TAH_VC9; δ13C, organic carbon
    Type: Dataset
    Format: text/tab-separated-values, 28 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Toomey, Michael R; Curry, William B; Donnelly, Jeffrey P; vam Hengstum, Peter J (2013): Reconstructing 7000 years of North Atlantic hurricane variability using deep-sea sediment cores from the western Great Bahama Bank. Paleoceanography, 28(1), 31-41, https://doi.org/10.1002/palo.20012
    Publication Date: 2023-06-27
    Description: Available overwash records from coastal barrier systems document significant variability in North Atlantic hurricane activity during the late Holocene. The same climate forcings that may have controlled cyclone activity over this interval (e.g., the West African Monsoon, El Niño-Southern Oscillation (ENSO)) show abrupt changes around 6000 yrs B.P., but most coastal sedimentary records do not span this time period. Establishing longer records is essential for understanding mid-Holocene patterns of storminess and their climatic drivers, which will lead to better forecasting of how climate change over the next century may affect tropical cyclone frequency and intensity. Storms are thought to be an important mechanism for transporting coarse sediment from shallow carbonate platforms to the deep-sea, and bank-edge sediments may offer an unexplored archive of long-term hurricane activity. Here, we develop this new approach, reconstructing more than 7000 years of North Atlantic hurricane variability using coarse-grained deposits in sediment cores from the leeward margin of the Great Bahama Bank. High energy event layers within the resulting archive are (1) broadly correlated throughout an offbank transect of multi-cores, (2) closely matched with historic hurricane events, and (3) synchronous with previous intervals of heightened North Atlantic hurricane activity in overwash reconstructions from Puerto Rico and elsewhere in the Bahamas. Lower storm frequency prior to 4400 yrs B.P. in our records suggests that precession and increased NH summer insolation may have greatly limited hurricane potential intensity, outweighing weakened ENSO and a stronger West African Monsoon-factors thought to be favorable for hurricane development.
    Keywords: Age, 14C AMS; Age, 14C calibrated; Age, comment; Age, dated; Age, dated material; Age, dated standard deviation; Calendar age; DEPTH, sediment/rock; Elevation of event; Event label; Florida Strait; GC; Gravity corer; KN166-2; Knorr; KNR166-2; KNR166-2-117; KNR166-2-118; KNR166-2-119; KNR166-2-133; KNR166-2-135; Latitude of event; Longitude of event; MUC; MultiCorer; PC; Piston corer
    Type: Dataset
    Format: text/tab-separated-values, 112 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-04-04
    Description: Climate exerted constraints on the growth and decline of past human societies but our knowledge of temporal and spatial climatic patterns is often too restricted to address causal connections. At a global scale, the inter-hemispheric thermal balance provides an emergent framework for understanding regional Holocene climate variability. As the thermal balance adjusted to gradual changes in the seasonality of insolation, the Inter-Tropical Convergence Zone migrated southward accompanied by a weakening of the Indian summer monsoon. Superimposed on this trend, anomalies such as the Little Ice Age point to asymmetric changes in the extratropics of either hemisphere. Here we present a reconstruction of the Indian winter monsoon in the Arabian Sea for the last 6000 years based on paleobiological records in sediments from the continental margin of Pakistan at two levels of ecological complexity: sedimentary paleo-DNA reflecting water column environmental states and planktonic foraminifers sensitive to winter conditions. We show that strong winter monsoons between ca. 4,500 and 3,000 years ago occurred during an interval of weak interhemispheric temperature contrast, which we identify as the Early Neoglacial Anomaly (ENA), and were accompanied by changes in wind and precipitation patterns across the eastern Northern Hemisphere and Tropics. This coordinated climate reorganization may have helped trigger the metamorphosis of the urban Harappan civilization into a rural society through a push-pull migration from summer flood-deficient river valleys to the Himalayan piedmont plains with augmented winter rains. Finally, we speculate that time-transgressive landcover changes due to aridification of the Tropics may have led to a generalized instability of the global climate during ENA at the transition from the warmer Holocene Optimum to the cooler Neoglacial.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-11-13
    Description: Climate exerted constraints on the growth and decline of past human societies but our knowledge of temporal and spatial climatic patterns is often too restricted to address causal connections. At a global scale, the inter-hemispheric thermal balance provides an emergent framework for understanding regional Holocene climate variability. As the thermal balance adjusted to gradual changes in the seasonality of insolation, the Intertropical Convergence Zone migrated southward accompanied by a weakening of the Indian summer monsoon. Superimposed on this trend, anomalies such as the Little Ice Age point to asymmetric changes in the extratropics of either hemisphere. Here we present a reconstruction of the Indian winter monsoon in the Arabian Sea for the last 6000 years based on paleobiological records in sediments from the continental margin of Pakistan at two levels of ecological complexity: sedimentary ancient DNA reflecting water column environmental states and planktonic foraminifers sensitive to winter conditions. We show that strong winter monsoons between ca. 4500 and 3000 years ago occurred during a period characterized by a series of weak interhemispheric temperature contrast intervals, which we identify as the early neoglacial anomalies (ENA). The strong winter monsoons during ENA were accompanied by changes in wind and precipitation patterns that are particularly evident across the eastern Northern Hemisphere and tropics. This coordinated climate reorganization may have helped trigger the metamorphosis of the urban Harappan civilization into a rural society through a push–pull migration from summer flood-deficient river valleys to the Himalayan piedmont plains with augmented winter rains. The decline in the winter monsoon between 3300 and 3000 years ago at the end of ENA could have played a role in the demise of the rural late Harappans during that time as the first Iron Age culture established itself on the Ghaggar-Hakra interfluve. Finally, we speculate that time-transgressive land cover changes due to aridification of the tropics may have led to a generalized instability of the global climate during ENA at the transition from the warmer Holocene thermal maximum to the cooler Neoglacial.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...