ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (3)
  • PANGAEA  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2024-04-20
    Description: This dataset contains information about the state of the central Arctic lower atmosphere during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. Through the merging of MOSAiC radiosonde, 10-m meteorological tower, ceilometer, and radiation station observations, this dataset provides information about the atmospheric boundary layer (depth and stability), temperature features (near-surface temperature and temperature inversion characteristics), wind features (near-surface wind speed and low-level jet characteristics), moisture features (near-surface mixing ratio and cloud characteristics), and surface radiation budget (up- and downwelling longwave and shortwave radiative flux) at the time of each MOSAiC radiosonde launch (approximately 4 times per day between September 2019 and October 2020). The dataset is structured in a NetCDF4 file, which follows the CF-1.10 convention. The objective of this dataset is to provide the user community with a consistent description of general lower atmospheric conditions throughout the MOSAiC year.
    Keywords: ABL; Arctic; Arctic Ocean; Atmosphere; Automatic weather station; AWS; FLUX_TOWER; Flux tower; meteorological data; MOSAiC; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; North Greenland Sea; Polarstern; PS122/1; PS122/1_10-103; PS122/1_10-105; PS122/1_10-106; PS122/1_10-107; PS122/1_10-108; PS122/1_10-135; PS122/1_10-21; PS122/1_10-22; PS122/1_10-23; PS122/1_10-24; PS122/1_10-28; PS122/1_10-29; PS122/1_10-3; PS122/1_10-30; PS122/1_10-31; PS122/1_10-4; PS122/1_10-53; PS122/1_10-54; PS122/1_10-56; PS122/1_10-57; PS122/1_10-73; PS122/1_10-74; PS122/1_10-75; PS122/1_10-76; PS122/1_10-94; PS122/1_10-95; PS122/1_10-99; PS122/1_11-10; PS122/1_11-29; PS122/1_11-30; PS122/1_11-31; PS122/1_11-32; PS122/1_11-33; PS122/1_11-43; PS122/1_11-44; PS122/1_11-45; PS122/1_11-46; PS122/1_11-5; PS122/1_11-6; PS122/1_11-7; PS122/1_11-8; PS122/1_11-9; PS122/1_1-299; PS122/1_1-341; PS122/1_1-345; PS122/1_2-100; PS122/1_2-101; PS122/1_2-103; PS122/1_2-104; PS122/1_2-105; PS122/1_2-106; PS122/1_2-107; PS122/1_2-110; PS122/1_2-111; PS122/1_2-112; PS122/1_2-113; PS122/1_2-115; PS122/1_2-116; PS122/1_2-117; PS122/1_2-118; PS122/1_2-119; PS122/1_2-120; PS122/1_2-121; PS122/1_2-122; PS122/1_2-123; PS122/1_2-127; PS122/1_2-135; PS122/1_2-136; PS122/1_2-137; PS122/1_2-139; PS122/1_2-140; PS122/1_2-141; PS122/1_2-143; PS122/1_2-144; PS122/1_2-145; PS122/1_2-146; PS122/1_2-147; PS122/1_2-148; PS122/1_2-149; PS122/1_2-150; PS122/1_2-160; PS122/1_2-161; PS122/1_2-162; PS122/1_2-163; PS122/1_2-171; PS122/1_2-172; PS122/1_2-173; PS122/1_2-174; PS122/1_2-179; PS122/1_2-180; PS122/1_2-181; PS122/1_2-182; PS122/1_2-184; PS122/1_2-185; PS122/1_2-186; PS122/1_2-187; PS122/1_2-188; PS122/1_2-189; PS122/1_2-190; PS122/1_2-191; PS122/1_2-192; PS122/1_2-193; PS122/1_2-51; PS122/1_2-52; PS122/1_2-53; PS122/1_2-54; PS122/1_2-55; PS122/1_2-56; PS122/1_2-59; PS122/1_2-60; PS122/1_2-61; PS122/1_2-62; PS122/1_2-69; PS122/1_2-70; PS122/1_2-71; PS122/1_2-72; PS122/1_2-73; PS122/1_2-74; PS122/1_2-75; PS122/1_2-76; PS122/1_2-77; PS122/1_2-78; PS122/1_2-79; PS122/1_2-80; PS122/1_2-81; PS122/1_2-82; PS122/1_2-83; PS122/1_2-85; PS122/1_2-86; PS122/1_2-87; PS122/1_2-88; PS122/1_2-91; PS122/1_2-92; PS122/1_2-93; PS122/1_2-94; PS122/1_4-19; PS122/1_4-20; PS122/1_4-21; PS122/1_4-22; PS122/1_4-30; PS122/1_4-31; PS122/1_4-32; PS122/1_4-33; PS122/1_4-35; PS122/1_4-36; PS122/1_4-4; PS122/1_4-5; PS122/1_4-6; PS122/1_4-7; PS122/1_4-8; PS122/1_4-9; PS122/1_5-10; PS122/1_5-11; PS122/1_5-12; PS122/1_5-13; PS122/1_5-20; PS122/1_5-21; PS122/1_5-22; PS122/1_5-23; PS122/1_5-31; PS122/1_5-32; PS122/1_5-33; PS122/1_5-34; PS122/1_5-36; PS122/1_5-38; PS122/1_5-39; PS122/1_5-49; PS122/1_5-50; PS122/1_5-51; PS122/1_5-52; PS122/1_5-6; PS122/1_5-7; PS122/1_5-72; PS122/1_5-73; PS122/1_5-74; PS122/1_5-75; PS122/1_5-79; PS122/1_5-80; PS122/1_6-112; PS122/1_6-113; PS122/1_6-114; PS122/1_6-115; PS122/1_6-12; PS122/1_6-125; PS122/1_6-126; PS122/1_6-13; PS122/1_6-14; PS122/1_6-15; PS122/1_6-24; PS122/1_6-25; PS122/1_6-26; PS122/1_6-27; PS122/1_6-3; PS122/1_6-4; PS122/1_6-53; PS122/1_6-54; PS122/1_6-55; PS122/1_6-56; PS122/1_6-71; PS122/1_6-72; PS122/1_6-73; PS122/1_6-74; PS122/1_6-82; PS122/1_6-83; PS122/1_6-84; PS122/1_6-85; PS122/1_7-100; PS122/1_7-101; PS122/1_7-102; PS122/1_7-107; PS122/1_7-108; PS122/1_7-109; PS122/1_7-110; PS122/1_7-113; PS122/1_7-114; PS122/1_7-13; PS122/1_7-14; PS122/1_7-26; PS122/1_7-27; PS122/1_7-28; PS122/1_7-29; PS122/1_7-30; PS122/1_7-43; PS122/1_7-44; PS122/1_7-45; PS122/1_7-46; PS122/1_7-63; PS122/1_7-64; PS122/1_7-65; PS122/1_7-66; PS122/1_7-83; PS122/1_7-84; PS122/1_7-85; PS122/1_7-86; PS122/1_7-99; PS122/1_8-101; PS122/1_8-11; PS122/1_8-115; PS122/1_8-116; PS122/1_8-117; PS122/1_8-118; PS122/1_8-12; PS122/1_8-120; PS122/1_8-121; PS122/1_8-13; PS122/1_8-14; PS122/1_8-39; PS122/1_8-40; PS122/1_8-41; PS122/1_8-42; PS122/1_8-5; PS122/1_8-6; PS122/1_8-63; PS122/1_8-64; PS122/1_8-65; PS122/1_8-66; PS122/1_8-80; PS122/1_8-81; PS122/1_8-82; PS122/1_8-83; PS122/1_8-95; PS122/1_8-96; PS122/1_8-97; PS122/1_9-101; PS122/1_9-102; PS122/1_9-105; PS122/1_9-106; PS122/1_9-13; PS122/1_9-14; PS122/1_9-18; PS122/1_9-19; PS122/1_9-20; PS122/1_9-21; PS122/1_9-41; PS122/1_9-42; PS122/1_9-43; PS122/1_9-44; PS122/1_9-57; PS122/1_9-58; PS122/1_9-59; PS122/1_9-60; PS122/1_9-77; PS122/1_9-78; PS122/1_9-79; PS122/1_9-80; PS122/1_9-88; PS122/1_9-89; PS122/1_9-90; PS122/1_9-91; PS122/1_99-46; PS122/1_99-47; PS122/1_9-99; PS122/2; PS122/2_14-119; PS122/2_14-13; PS122/2_14-14; PS122/2_15-1; PS122/2_15-13; PS122/2_15-2; PS122/2_15-3; PS122/2_15-4; PS122/2_15-5; PS122/2_15-7; PS122/2_16-10; PS122/2_16-11; PS122/2_16-13; PS122/2_16-16; PS122/2_16-17; PS122/2_16-18; PS122/2_16-19; PS122/2_16-2; PS122/2_16-20; PS122/2_16-3; PS122/2_16-30; PS122/2_16-31; PS122/2_16-32; PS122/2_16-33; PS122/2_16-4; PS122/2_16-40; PS122/2_16-41; PS122/2_16-42; PS122/2_16-43; PS122/2_16-5; PS122/2_16-57; PS122/2_16-58; PS122/2_16-59; PS122/2_16-6; PS122/2_16-60; PS122/2_16-67; PS122/2_16-68; PS122/2_16-69; PS122/2_16-7; PS122/2_16-70; PS122/2_16-76; PS122/2_17-10; PS122/2_17-102; PS122/2_17-103; PS122/2_17-104; PS122/2_17-105; PS122/2_17-11; PS122/2_17-110; PS122/2_17-12; PS122/2_17-21; PS122/2_17-22; PS122/2_17-23; PS122/2_17-24; PS122/2_17-35; PS122/2_17-36; PS122/2_17-37; PS122/2_17-38; PS122/2_17-55; PS122/2_17-56; PS122/2_17-57; PS122/2_17-58; PS122/2_17-71; PS122/2_17-72; PS122/2_17-73; PS122/2_17-74; PS122/2_17-92; PS122/2_17-93; PS122/2_17-94; PS122/2_17-95; PS122/2_18-100; PS122/2_18-11; PS122/2_18-12; PS122/2_18-13; PS122/2_18-20; PS122/2_18-21; PS122/2_18-22; PS122/2_18-27; PS122/2_18-29; PS122/2_18-30; PS122/2_18-31; PS122/2_18-48; PS122/2_18-49; PS122/2_18-50; PS122/2_18-51; PS122/2_18-67; PS122/2_18-68; PS122/2_18-69; PS122/2_18-70; PS122/2_18-85; PS122/2_18-86; PS122/2_18-87; PS122/2_18-88; PS122/2_18-94; PS122/2_18-95; PS122/2_18-96; PS122/2_18-97; PS122/2_19-10; PS122/2_19-100; PS122/2_19-11; PS122/2_19-12; PS122/2_19-124; PS122/2_19-125; PS122/2_19-126; PS122/2_19-127; PS122/2_19-143; PS122/2_19-22; PS122/2_19-23; PS122/2_19-24; PS122/2_19-25; PS122/2_19-47; PS122/2_19-48; PS122/2_19-49; PS122/2_19-50; PS122/2_19-71; PS122/2_19-72; PS122/2_19-73; PS122/2_19-74; PS122/2_19-84; PS122/2_19-85; PS122/2_19-86; PS122/2_19-87; PS122/2_19-97; PS122/2_19-98; PS122/2_19-99; PS122/2_20-10; PS122/2_20-103; PS122/2_20-104; PS122/2_20-105; PS122/2_20-106; PS122/2_20-119; PS122/2_20-120; PS122/2_20-121; PS122/2_20-122; PS122/2_20-135; PS122/2_20-19; PS122/2_20-20; PS122/2_20-21; PS122/2_20-22; PS122/2_20-37; PS122/2_20-38; PS122/2_20-39; PS122/2_20-40; PS122/2_20-66; PS122/2_20-67; PS122/2_20-68; PS122/2_20-69; PS122/2_20-8; PS122/2_20-84; PS122/2_20-85; PS122/2_20-86; PS122/2_20-87; PS122/2_20-9; PS122/2_21-106; PS122/2_21-107; PS122/2_21-108; PS122/2_21-109; PS122/2_21-115; PS122/2_21-116; PS122/2_21-117; PS122/2_21-118; PS122/2_21-132; PS122/2_21-133; PS122/2_21-134; PS122/2_21-135; PS122/2_21-136; PS122/2_21-21; PS122/2_21-22; PS122/2_21-23; PS122/2_21-37; PS122/2_21-38; PS122/2_21-39; PS122/2_21-40; PS122/2_21-57; PS122/2_21-58; PS122/2_21-59; PS122/2_21-60; PS122/2_21-79; PS122/2_21-80; PS122/2_21-81; PS122/2_21-82; PS122/2_22-10; PS122/2_22-102; PS122/2_22-103; PS122/2_22-104; PS122/2_22-105; PS122/2_22-11; PS122/2_22-111; PS122/2_22-20; PS122/2_22-21; PS122/2_22-22; PS122/2_22-23; PS122/2_22-38; PS122/2_22-39; PS122/2_22-40; PS122/2_22-41; PS122/2_22-57; PS122/2_22-58; PS122/2_22-59; PS122/2_22-60; PS122/2_22-78; PS122/2_22-79; PS122/2_22-80; PS122/2_22-81; PS122/2_22-87; PS122/2_22-88; PS122/2_22-89; PS122/2_22-9; PS122/2_23-101; PS122/2_23-102; PS122/2_23-103; PS122/2_23-104; PS122/2_23-117; PS122/2_23-118; PS122/2_23-119; PS122/2_23-120; PS122/2_23-129; PS122/2_23-22; PS122/2_23-23; PS122/2_23-24; PS122/2_23-25; PS122/2_23-41; PS122/2_23-42; PS122/2_23-43; PS122/2_23-44; PS122/2_23-54; PS122/2_23-55; PS122/2_23-56; PS122/2_23-57; PS122/2_23-6; PS122/2_23-7; PS122/2_23-8; PS122/2_23-80; PS122/2_23-81; PS122/
    Type: Dataset
    Format: application/x-hdf, 440 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-01
    Description: C band backscatter parameters contain information about the upper snowpack/firn in the dry snow zone. The wide incidence angle diversity of the Advanced Scatterometer (ASCAT) gives unprecedented characterisation of backscatter anisotropy, revealing the backscatter response to climatic forcing. The A (isotropic component) and M-2 (bi-sinusoidal azimuth anisotropy) parameters are investigated here, in conjunction with data from atmospheric and snowpack models, to identify the backscatter response to surface forcing parameters (wind speed and persistence, precipitation, surface temperature, density and grain size). The long-term mean A parameter is successfully recreated with a regression using these drivers, indicating strong links between the A parameter and precipitation on long timescales. While the ASCAT time series is too short to determine which factors drive observed trends, factors influencing the seasonal and short timescale variability are revealed. On these timescales, A strongly responds to the propagation of surface temperature cycles/anomalies downward through the firn, via direct modulation of the dielectric constant. The influence of precipitation on A is small at shorter time scales. The M2 parameter is controlled by wind speed and persistence, through modification of monodirectionally-aligned surface roughness. This variability indicates that throughout much of coastal Antarctica, a microwave 'snapshot' is generally not representative of longer-term conditions.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-18
    Description: Small Unmanned Meteorological Observer (SUMO) unmanned aerial vehicles (UAVs) were used to observe atmospheric boundary layer temperature profiles in the vicinity of McMurdo Station, Antarctica during January and September 2012. The observations from four flight days are shown and exhibit a variety of boundary layer temperature profiles ranging from deep, well-mixed conditions to strong, shallow inversions. Repeat UAV profiles over short periods of time (tens of minutes to several hours) revealed rapid changes in boundary layer structure. The success of the SUMO flights described here demonstrates the potential for using small UAVs for Antarctic research.
    Print ISSN: 0954-1020
    Electronic ISSN: 1365-2079
    Topics: Biology , Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-10-17
    Description: The Antarctic coast is an area of high cyclonic activity. Specifically, the regions of Terra Nova Bay, in the western Ross Sea, and Byrd Glacier, in the western Ross Ice Shelf, are prone to cyclone development. The United States, New Zealand, and Italian Antarctic programmes conduct extensive research activities in the region of the western Ross Sea. Due to the harsh weather conditions associated with the cyclonic systems that occur in this region and the abundant research activities in the area, it is important to be able to accurately predict the timing, location and strength of cyclones in this sector of Antarctica. This study evaluates the ability of the Antarctic Mesoscale Prediction System (from 2006–09) to accurately forecast cyclones in the region of the western Ross Sea by comparing the Antarctic Mesoscale Prediction System forecasts to cyclones identified in infrared satellite imagery. The results indicate that the Antarctic Mesoscale Prediction System is able to accurately predict the presence of cyclones about 40% of the time (at a minimum) and the presence of no cyclones about 70% of the time.
    Print ISSN: 0954-1020
    Electronic ISSN: 1365-2079
    Topics: Biology , Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...